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PREFACE 

The California Energy Commission’s (CEC) Energy Research and Development Division 

supports energy research and development programs to spur innovation in energy efficiency, 

renewable energy and advanced clean generation, energy-related environmental protection, 

energy transmission and distribution and transportation.  

In 2012, the Electric Program Investment Charge (EPIC) was established by the California 

Public Utilities Commission to fund public investments in research to create and advance new 

energy solutions, foster regional innovation and bring ideas from the lab to the marketplace. 

The CEC and the state’s three largest investor-owned utilities—Pacific Gas and Electric 

Company, San Diego Gas & Electric Company and Southern California Edison Company—were 

selected to administer the EPIC funds and advance novel technologies, tools, and strategies 

that provide benefits to their electric ratepayers. 

The CEC is committed to ensuring public participation in its research and development 

programs that promote greater reliability, lower costs, and increase safety for the California 

electric ratepayer and include: 

• Providing societal benefits.

• Reducing greenhouse gas emission in the electricity sector at the lowest possible cost.

• Supporting California’s loading order to meet energy needs first with energy efficiency

and demand response, next with renewable energy (distributed generation and utility

scale), and finally with clean, conventional electricity supply.

• Supporting low-emission vehicles and transportation.

• Providing economic development.

• Using ratepayer funds efficiently.

Identifying Effective Demand Response Program Designs for Residential Customers is the final 

report for the Load Management Systems That Facilitate Participation as Demand-Side 

Resources - Group 2 project (Contract Number EPC-15-073) conducted by the UCLA Luskin 

Center for Innovation. The information from this project contributes to Energy Research and 

Development Division’s EPIC Program. 

For more information about the Energy Research and Development Division, please visit the 

CEC’s research website (www.energy.ca.gov/research/) or contact the CEC at 916-327-1551. 

http://www.energy.ca.gov/research/


ii 

ABSTRACT 

Demand response encourages electricity customers to reduce their energy consumption at 

times of high stress on the electrical grid. Utilities notify customers during these critical energy 

periods, called demand response events, and then measure customer consumption relative to 

the California Independent System Operator’s estimate of their counterfactual consumption, 

called a baseline. Effective demand response programs reduce the need for peak electricity 

generation power plants, which are often the most expensive and polluting. To date, empirical 

studies that evaluate the effectiveness of demand response financial and nonfinancial 

incentives have been limited. 

This project informs residential demand response program designs. Researchers conducted a 

randomized control trial and analyzed existing demand response data to test the effectiveness 

of different program designs using two behind-the-meter customer engagement platforms.  

Researchers found that demand response events are effective at reducing consumption, but 

reductions vary by user characteristics and other factors. “Energy engaged” customers or 

those with solar panels, plug-in electric vehicles, or automation devices had the greatest 

consumption reductions. Demand response events reduced consumption the most during the 

spring and summer, especially on hotter days. Offering a financial incentive for participation 

was critical to inducing consumption reductions, but customers did not respond strongly to 

changes in marginal incentives. Similarly, messaging emphasizing economic benefits was more 

effective than health and environmental messaging. Moreover, customers modify the 

magnitude of their conservation depending on their baseline level, all else equal. Finally, user 

engagement falls over time. A central challenge to demand response providers is not only 

attracting customers, but ensuring they remain active long term. Increasing the uptake of 

automation devices may be one way to address this challenge.  

Keywords: Demand response, residential customers, time-of-use, behind-the-meter, financial 

incentives, nonlinear incentives, critical peak pricing, automation, customer behavior, moral 

suasion, conservation, consumption behavior 

Please use the following citation for this report: 

Gattaciecca, Julien, Kelly Trumbull, Samuel Krumholz, Kelley McKanna, and J. R. DeShazo. 

University of California, Los Angeles. 2020. Identifying Effective Demand Response 
Program Designs for Residential Customers. California Energy Commission. 

Publication Number: CEC-500-2020-072. 
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EXECUTIVE SUMMARY  

Introduction 
Integrating renewable energy resources like solar increases the need for more grid and load 

flexibility. Demand response is an important way to achieve such flexibility in California, as it 

encourages consumers to reduce their energy consumption at times of high stress on the grid.  

Demand response events occur when customers are notified to reduce their consumption 

during critical energy periods. Many demand response providers use behind-the-meter 

engagement platforms, such as smartphone applications, where customers receive 

notifications informing them when to reduce consumption. These notifications can also be 

accompanied by different types of messages and financial incentives, which reward users for 

reducing their electricity consumption during demand response events.  

Project Purpose 
The Luskin Center for Innovation at the University of California, Los Angeles (UCLA) partnered 

with two demand response providers to test the effectiveness of several program designs. To 

date, empirical studies that evaluate the effectiveness of demand response incentives and, 

especially, interactions between financial and nonfinancial incentives have been limited. 

Specifically, this research aims to identify the most effective demand response messaging 

content, format, and timing, with an emphasis on identifying differential response by the 

socioeconomic and energy-use characteristics of targeted populations. This analysis is 

intended to inform decision makers and help managers of residential demand response 

programs maximize participation and energy consumption reductions.  

Project Approach  
This study tested the effectiveness of innovative design strategies for residential demand 

response programs using behind-the-meter customer engagement platforms. Demand 

response programs are used to inform and encourage residential electricity customers to 

reduce or shift their energy consumption during demand response events. This study focuses 

on four main goals to advance understanding of demand response intervention design. These 

include (1) evaluating the effectiveness of different timing and format of messages, including 

economic benefits messages and environmental messages; (2) assessing different fixed and 

nonlinear financial incentive mechanisms; (3) assessing current baseline methodology and the 

effect of different baselines level on customers’ electricity conservation; (4) anticipating the 

effectiveness of time of use rates based on the project team’s research findings. 

These alternative demand response program designs were tested on subsets of customers 

within Pacific Gas and Electric (PG&E), Southern California Edison (SCE), and San Diego Gas & 

Electric (SDG&E) service territories. These tests include identifying how customers’ responses 

to alternative demand response strategies differ, depending on their socioeconomic and 

demographic characteristics.  

Researchers partnered with two demand response providers, Chai Energy and OhmConnect, 

Inc., to test research questions appropriate for the different capabilities of each of the two 

behind-the-meter customer engagement platforms. 
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Chai Energy provides users with energy analytics through households’ smartphones, alerts 

users to critical energy periods, and encourages them to shift or reduce consumption. During 

the first part of this study, researchers performed a randomized control trial to test the 

effectiveness of demand response program incentives and messages through Chai Energy’s 

smartphone application. Specifically, this analysis included testing the effects of nonfinancial 

and financial incentives (ranging from $0.05 to $5 per kWh saved) and the effects of cost 

savings versus environmental messages.   

The second half of this study relied on OhmConnect, an internet-based demand response 

provider with more than 100,000 users in California. OhmConnect challenges them to reduce 

consumption during critical energy periods called #OhmHours, measures their actual 

consumption against a calculated historical baseline, and rewards them for the difference.  

Researchers used energy consumption data from these customers to perform a variety of 

nonexperimental statistical analyses. These analyses examined different elements of demand 

response program designs. Specifically, researchers evaluated (1) streak and status bonus 

programs that reward users for consistent behavior, (2) the accuracy of user baseline 

estimations and customer responsiveness to baseline levels, and (3) the ways consumption 

reductions varied by demographics, which can help inform understanding of the effect of time-

of use rates.  

Project Results  
This study is not a performance evaluation of effective demand response providers. Both 

OhmConnect and Chai Energy are registered non-utility demand response providers with the 

California Public Utilities Commission (CPUC). This UCLA analysis is distinct from any 

performance evaluations or methods required by state agencies like the CPUC or California 

Energy Commission (CEC) for demand response providers.  

Rather, this study aims to further understand the behavioral components of energy 

conservation. Because demand response is needed when the marginal price of electricity is 

high, researchers examined if customers respond to marginal price to inform how demand 

response providers can make it more salient to users. For example, researchers tested 

responsiveness to changes in marginal prices through OhmConnect’s streak and status 

programs and to different financial incentive levels with Chai Energy. 

Effect of Demand Response on Energy Conservation 

Researchers found that demand response events are effective at reducing consumption, but 

reductions vary by user characteristics and other factors. This analysis investigated the 

differences in the propensity of customers from different demographic and energy-use 

segments to reduce consumption during critical energy periods.  It is important to highlight 

that the consumption reductions estimated in these analyses are different from those 

traditionally used to evaluate demand response programs, which calculate savings beneath an 

California Independent System Operator (California ISO)-estimated baseline, described further 

in Chapter 4. In this analysis, researchers do not use that baseline because the accuracy of the 

baseline differs across groups and would lead to bias in the project team’s estimations of 

differing responsiveness. With that caveat in mind, researchers estimate the effect of a 

demand response event on consumption for different types of users. The effect is defined as 
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the amount a user consumes beneath what he or she would have consumed in the absence of 

the demand response event.  

Across all users, researchers found that on average throughout the year, users reduced their 

energy consumption by 0.15 kilowatt-hours (kWh), or 18 percent, during an OhmConnect 

demand response event relative to what they would have consumed without an event. Users 

reduced consumption by similar amounts even when they received demand response events 

two days in a row; this result suggests that individuals are not merely shifting usage to the 

next day when an event occurs. Furthermore, users do not increase their consumption in the 

hours or days before or after a demand response event. This finding provides additional 

evidence that users are conserving energy in response to demand response events rather than 

shifting their energy consumption to other times. More importantly, users have larger 

reductions in energy consumption during demand response events when they first join the 

demand event platform. Customers reduce energy consumption by 22 percent during their 

first 20 events relative to 17 percent after. This finding suggests that user engagement falls 

over time.  

Although users reduced consumption during demand response events throughout the year, 

the greatest consumption reductions occurred in the spring and summer, and especially on 

hotter days. This conclusion suggests that it is easier for customers to reduce consumption 

when they have a greater capacity to do so, that is, when they can turn off their air 

conditioners. On average, customers reduced electricity consumption during demand response 

events by 21 percent on days hotter than 90 degrees Fahrenheit and only 15 percent on 

cooler days. Similarly, energy conservation during demand response events is about 1.8 times 

and 3.5 times greater in absolute terms during spring and summer, respectively, compared to 

the rest of the year. The time of day that a demand response event began was less important, 

however, than the time of year. Researchers found that the effectiveness of demand response 

event timing may be context-specific, and may rely more on messaging or financial incentive 

than on the time.  

Moreover, researchers found customer responsiveness varied by user characteristics. Engaged 

energy users, or those with solar photovoltaic (PV) panels, plug-in electric vehicles (PEVs), or 

automation devices (such as smart home, smart thermostats, or smart appliances) or a 

combination are more likely to reduce consumption during #OhmHours. Specifically, PEV 

owners reduce consumption 2.5 times more than non-PEV owners, while users who have ever 

adopted automation reduce three times more relative to never-adopters. Users who have 

automation devices used 47 percent less energy during a demand response event relative to 

13 percent reductions for those who do not. This finding suggests that energy engaged users 

could be targeted for more focused demand response programs.  

There were relatively minor proportional differences among most demographic subgroups. 

California Alternative Rates for Energy (CARE) customers proportionally conserved less than 

non-CARE customers, although this difference was driven largely by differences in solar PV, 

PEV, and automation ownership between those two customer classes. Similarly, when looking 

at non-energy-engaged customers, time-of-use users reduce less than users on other tariffs. 

However, these results are inverted when looking at energy-engaged customers. Favoring 

energy technologies such as automation seems essential to maintain high-demand response 

efficiency, even as California transitions more customers to time-of-use pricing. 
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Baseline 

Demand response providers typically reward users during a demand response event based on 

their conservation relative to an assigned baseline. The baseline represents a user’s energy 

consumption in the absence of a demand response event. Baselines are set based on the 

average of consumption in the same hour of the demand event during the previous 10 non-

event, nonholiday weekdays. With OhmConnect, customers receive information about their 

baseline when they are notified of an event, and how this baseline compares to their electricity 

consumption for the previous week.  

Customers modify the magnitude of their conservation depending on their baseline level. 

Customers reduce their energy consumption more when their baseline is set lower, all other 

factors held constant.  Customer responsiveness to baseline changes varied by demographics. 

Only customers without automation respond to changes in baseline, likely because behavioral 

responses require active engagement by customers. Furthermore, customers in low-income zip 

codes responded the most to changes in baseline both proportionally and in absolute terms. 

These findings suggest that in information environments such as OhmConnect where a large 

emphasis is placed on meeting a goal, the level at which the goal is set may be a useful lever 

for changing conservation behavior.  

Streak and Status Programs 

This analysis assesses how nonlinear pricing strategies can influence consumers’ willingness to 

reduce energy consumption during peak periods. OhmConnect employs a novel incentive 

structure to motivate consumers to conserve electricity during critical energy events 

(#OhmHours). Here, researchers focused on two of OhmConnect’s programs offering 

nonlinear incentives: streak and status. Individuals build "streaks" by consuming less than 

their baseline in consecutive demand response events. OhmConnect participants can earn 

different statuses (silver, gold, or platinum) based on the percentage of energy saved relative 

to the baseline over their past 10 #OhmHours. 

Researchers did not find that maintaining a streak or status (and the corresponding financial 

bonuses) induced greater energy conservation than missing a streak or status. Researchers 

found no effect of extending the status or streak when compared to users who lost the status 

or streak, despite differences in marginal financial incentives. When looking at a user's first 20 

events, researchers found that individuals who extend their streak to reduce electricity 

consumption more than those who lost it, but only if their streak was five events or longer. For 

status, researchers observed that moving from silver to gold had an effect on consumption 

and increased the likelihood that a user would invest in automation technology. Those effects 

were not seen for platinum status.  

These results do not find evidence that marginal financial incentives provided by streak and 

status induce greater conservation behavior in the general population. This finding is 

consistent with the results from the Chai Energy analysis in this report and in a previous study 

(Gillan 2017) that found very low additional responsiveness to higher marginal rewards. 

However, the lack of marginal price effect does not necessarily imply that these programs are 

not shifting behavior. It could be that the presence of streak or status rewards induces all 

users to try harder, whether they have an active streak or status. To test this, researchers 

would need an additional experiment in which only some users had access to the streak and 
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status programs. This experiment is outside the scope of the current study but is an important 

area of potential future research.  

Financial Incentives and Messaging 

In the experiment with Chai Energy, researchers uncover how different types of financial 

incentives and messaging affect consumers’ willingness to reduce energy consumption during 

peak periods. Providing a financial incentive was more effective than not, although the size of 

the incentive was relatively unimportant.  

As a secondary analysis, researchers found that economic benefits messaging emphasizing 

cost savings was the most effective framing for demand response events, with and without 

financial incentives. Even on hot days, which saw greater consumption reductions, the moral 

messages (which emphasized how health and the environment are affected) reduced 

consumption only by 1 percent to 2 percent compared to the economic benefits message, 

which reduced consumption by 6 percent.  

User Engagement 

Finally, user engagement falls over time. Users have larger reductions in energy consumption 

during demand response events when they first begin participating. Researchers found that 

users reduced consumption about 30 percent more during their first 20 demand response 

events relative to later events. Moreover, researchers found that streak length and status level 

decreased over time, suggesting users were less engaged over time. With Chai Energy, 

researchers observed high levels of customer attrition after only a few months without 

receiving demand response event notifications. Users are difficult to recruit in the first place. 

In order to participate, customers needed to provide demand response providers with access 

to his or her energy consumption data, through Green Button Data. The process for granting a 

third-party access to these data was arduous for customers, which resulted in only 24 percent 

of registered customers successfully providing data. A central challenge of all demand 

response providers is how to attract customers and  ensure that they remain active conservers 

in the long term. OhmConnect’s strategy of emphasizing automation may be an effective way 

to accomplish this goal.  

Technology and Knowledge Transfer – Advancing the Research to 
Market 
This research will help demand response providers to design cost efficient and long lasting 

demand response programs. This report informs on effective message content, incentives and 

baseline levels, and the hours at which demand response programs maximize participation and 

energy reductions from residential customers. This report also provides some policy 

recommendations, which could be used by a wide variety of stakeholders.  

The results and lessons learned from this research are available to the public through 

communication materials developed by the research team. The research team is preparing to 

publish this research in academic journals to contribute to the existing demand response 

literature. Academic journals are a good avenue to disseminate research to other universities 

and researchers and can result in the identification of opportunities to develop future research. 

The research team will also disseminate the research through conferences and workshops, as 

appropriate. Such forums are ways to reach a variety of stakeholders, including key demand 
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response industry players such as representatives from the investor-owned utilities, publicly 

owned utilities, community choice aggregators, regulatory agencies, and private demand 

response providers. 

Benefits to California  
Effective demand response programs result in a variety of economic, health, and 

environmental benefits for Californians. Demand response is an important way to achieve grid 

and load flexibility in California, as it encourages consumers to reduce their energy 

consumption at times of high stress on the grid. In addition, demand response  reduces 

electricity consumption during critical energy periods, when electricity is often generated by 

the most expensive and polluting power plants. The demand response programs studied over 

the two years of this research helped electricity customer participants reduce their bills by an 

estimated total of $34,700, or about $15 per customer. Moreover, a large amount of incentive 

funds were paid to participating customers. Because demand response happens during critical 

times, it also likely provides nonparticipants with many other benefits, including reduced 

greenhouse gas and criteria pollutant emissions, which have environmental and health 

benefits.  

The results of this study can be used to design more effective demand response programs. As 

this research assists investor-owned utilities (IOUs) and demand response providers in 

understanding the effectiveness of alternative demand respond messages and strategies 

across different households, this study also specifically benefits Californian IOU ratepayers 

with respect to the Electric Program Investment Charge goals of providing greater reliability, 

lower costs, and increased safety. Furthermore, effective demand response programs directly 

benefit IOUs’ residential customers, the CPUC, CEC, California ISO, California Legislature, and 

other entities working to modernize California’s electricity grid and related infrastructure. 
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CHAPTER 1:  
Introduction 

Demand response encourages electricity customers to reduce their energy consumption at 

times of high stress on the electrical grid. Customers are notified during these critical peak 

periods, called demand response events, and then their consumption is measured relative to 

their estimated counterfactual consumption, called a baseline. These notifications can also be 

accompanied by different types of messages and financial incentives, which reward users for 

reducing their electricity consumption during demand response events. Integrating renewable 

energy resources increases the need for more flexible demand. Inducing residential consumers 

to conserve energy during peak periods is a growing component of California’s overall 

electricity demand management strategy.  

To date, empirical studies that evaluate the effectiveness of demand response incentives have 

been limited. Critical peak prices have been shown to work among various populations across 
the United States.1,2,3 The effect of these peak time prices appears to be greatest among 

households in hotter climates and those that possess smart thermostats and other smart 
appliances.4 Other studies have compared the use of different incentive structures5 and the 

interaction of real-time electricity consumption feedback and peak prices6 and compared 

financial incentives with nonfinancial appeals. However, the wealth of new work demonstrating 

 
1 Faruqui, Ahmad, and Sanem Sergici. 2011. "Dynamic Pricing of Electricity in the Mid-Atlantic Region: 

Econometric Results From the Baltimore Gas and Electric Company Experiment." Journal of Regulatory 
Economics 40.1: 82-109. 

2 Faruqui, Ahmad, Sanem Sergici, and Lamine Akaba. 2013. "Dynamic Pricing of Electricity for Residential 

Customers: The Evidence From Michigan." Energy Efficiency 6.3: 571-584. 

3 Faruqui, Ahmad, Sanem Sergici, and Lamine Akaba. 2014. "The Impact of Dynamic Pricing on Residential and 

Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut." The Energy Journal 35.1: 
137-160. 

4 Faruqui, Ahmad, and Sanem Sergici. 2013. "Arcturus: International Evidence on Dynamic Pricing." The 
Electricity Journal 26.7: 55-65 

5 Wolak, Frank A.  2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing 

Experiment." The American Economic Review: 83-87. 

6 Jessoe, Katrina, and David Rapson. 2014. "Knowledge Is (Less) Power: Experimental Evidence from Residential 

Energy Use." American Economic Review 104.4: 1417-38 
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the power of nonfinancial incentives7,8,9 and the interactions between information and prices10,11 

suggest that there is far more work to be done to identify the most effective approaches to 

encouraging load shifting among different populations.  

This research is intended to identify the most effective demand response message content, 

format, and timing, depending on the socioeconomic characteristics of the targeted 

population. This analysis is intended to inform decision makers and help demand response 

program managers maximize participation and energy consumption reductions for residential 

customers. 

As California’s electricity grid becomes more reliant on renewable energy, there is expected to 

be more intermittency in electricity supply. In order for electricity system operators to maintain 

reliability, utilities will have to undertake different demand management strategies to 

encourage greater consumption during periods when  intermittency results in misalignment 

between electricity supply and demand.  

This information is highly policy-relevant for two reasons. First, it will inform whether demand 

response events can be a cost-effective tool within California’s greater demand management 

strategy. Second, even outside demand response events, better understanding of what affects 

customers’ willingness to conserve and how this relationship varies across customer types can 

allow the creation of a more effective demand strategy. This understanding provides useful 

evidence for circumstances and customers in which price-based strategies are more effective 

than nonmarket strategies (such as moral messaging) and vice-versa. 

1.1 Overview  
This study tested the effectiveness of innovative design strategies, also known as 

“treatments,” for residential demand response programs using behind-the-meter customer 

engagement platforms. This study focuses on four main goals to advance understanding of 

demand response intervention design. These include (1) evaluating the effectiveness of 

different timing and format of messages, including economic benefits messages and 

environmental messages; (2) assessing different fixed and nonlinear financial incentive 

mechanisms; (3) assessing current baseline methodology and the effect of different baselines 

level on customers’ electricity conservation; and (4) anticipating the effectiveness of TOU 

based on the project team’s research findings. 

 
7 Allcott, Hunt. 2011. "Social Norms and Energy Conservation." Journal of Public Economics 95.9: 1082-1095. 

8 Asensio, Omar I., and Magali A. Delmas. 2015. "Nonprice Incentives and Energy Conservation." Proceedings of 
the National Academy of Sciences 112.6: E510-E515 

9 Harding, Matthew, and Alice Hsiaw. 2014. "Goal Setting and Energy Conservation.” Journal of Economic 
Behavior & Organization 107: 209-227. 

10 Kahn, M. E., and F. A. Wolak. 2013. Using Information to Improve the Effectiveness of Nonlinear Pricing: 
Evidence from a Field Experiment. California Air Resources Board, Research Division. 

11 Gilbert, Ben, and Joshua Graff Zivin. 2014. "Dynamic Salience with Intermittent Billing: Evidence From Smart 

Electricity Meters." Journal of Economic Behavior & Organization 107: 176-190. 
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These alternative demand response program designs are tested on subsets of customers 

within Pacific Gas and Electric, Southern California Edison, and San Diego Gas & Electric 

service territories. These tests include identifying how customers’ responses to alternative 

demand response strategies differ, depending on their socioeconomic, demographic, and 

geographic characteristics.  

This study used behind-the-meter customer engagement platforms from two demand 

response providers, Chai Energy and OhmConnect, to test the research questions made 

possible by the different capabilities of each platform. 

1.1.1 Chai Energy 

The first half of this study, which took place from August 28, 2017, to October 31, 2017, used 

a behind-the-meter customer engagement platform developed by Chai Energy. Chai Energy 

provides a free smartphone application for Android and iOS smartphones. This application had 

capabilities that allowed researchers to perform a randomized control trial to test the 

effectiveness of different demand response program incentives and messages. Specifically, this 

analysis included testing the effects of nonfinancial and financial incentives (ranging from 

$0.05 to $5.00 per kWh saved) and positive and negative message framing. This analysis also 

assesses how these effects differ across customers’ socioeconomic, demographic, and 

geographic characteristics.  

Chai Energy's customer engagement platform uses smart meter data to provide households 

with energy analytics through their smartphones, illustrated in Figure 1. There are two levels 

of service: the Chai Lite energy analytic service is based on 15-minute interval data, and the 

Chai Pro energy analytic service is based on continuous and appliance-disaggregated data. 

Customers receiving either service level receive energy analytical insights aimed at increasing 

awareness of consumption habits and recommendations of ways to save. These insights 

include energy consumption visualizations, forecasted monthly bills based on rate structure 

and consumption trends, and periodic emails with cost minimizing advice tailored to specific 

customer contexts. Customers with Chai Pro also receive appliance-specific information that 

suggests how to save energy. 

Figure 1: Chai Energy Analytics Example  

   

Source: Chai Energy  
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Chai Energy users have implemented the following methods of saving energy during demand 

response events: 

• Increasing the thermostat setting to a higher temperature or turning off the AC system 

• Turning off or unplugging electronics, appliances, lights, or pool pumps or a 

combination 

• Delaying doing laundry or charging electric vehicle. 

1.1.2 OhmConnect, Inc. 

The second half of this study relied on OhmConnect, Inc., a large San Francisco-based 

demand response provider with more than 100,000 users in California. OhmConnect 

encourages users to reduce energy consumption with the goal of reducing residential user 

demand on the grid using a behind-the-meter engagement platform. OhmConnect provides 

financial incentives for users of its service to reduce electricity consumption during critical 

energy periods, called #OhmHours.  

Through OhmConnect, researchers tested several questions made possible by OhmConnect’s 

large user base and its use of nonlinear incentive programs, which provide users with 

increasing incentives for consistent behavior. Using detailed electricity consumption, event 

performance, sociodemographic, and geographic data on a random sample of 20,000 users 

from OhmConnect, the second half of this study focused on three primary research questions 

examining how to encourage increased participation and improve the cost-effectiveness of 

demand events. Specifically, researchers used regression discontinuity design12 methods to test 

(1) how users responded to demand response program designs like streaks and statuses, (2)  

How important the baseline calculation is for consumption, and (3) how consumption 

reductions varied by demographics. 

Figure 2 shows the OhmConnect engagement online platform, which  is used by residential 

electricity customers to receive information about demand response events. During 

#OhmHours, users earn points for each kWh reduced relative to what their estimated 

consumption  would have been without a demand response event, known as a baseline. Users 

can cash out points (on PayPal, Amazon, Target, and the OhmConnect store), donate points to 

a charity, or send them to another OhmConnect user at any time. Users can also use their 

points to purchase items at the OhmConnect store, including automation devices that can be 

used during #OhmHours such as smart thermostats or smart appliances.  

OhmConnect users also can receive engagement bonuses. Examples include payments for 

reaching certain levels within the platform, responding proactively to others on forums, 

connecting additional devices for automation, and referring others. OhmConnect works to 

keep users engaged with the platform to reduce their energy consumption regularly, including 

by using gamified features, such as streaks and status levels. 

  

 
12 Regression discontinuity design allows researchers to non-experimentally test differences between groups that 

fall above and below a threshold.  
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Figure 2: OhmConnect Platform 

 

Source: OhmConnect, Inc. 

During #OhmHours, users receive points by reducing energy consumption through ‘behavioral’ 

or ‘automated’ responses.  Based on a dispatch signal, OhmConnect dispatches users either 

via behavioral notifications or device automation or both. ‘Behavioral’ responses are when 

users take actions in response to #OhmHours by turning off lights, waiting to do laundry until 

after the #OhmHour event, or any other direct, energy-saving activity.  

OhmConnect users can also automate their participation by using their smart home, smart 

appliances, or smart thermostats. Users that “connect” their devices to the OhmConnect 

platform allow OhmConnect to turn off or change the temperature level of the thermostat 

during #OhmHours. Across all OhmConnect users, more than 30,000 smart devices (smart 

plugs, smart thermostats, and smart appliances) are turned off during each energy-saving 

event and turned back on when the #OhmHour is over. OhmConnect observes that users with 

automation devices reduce their energy usage 100-300 percent more than users without 

devices. In addition, users with automation devices typically continue to reduce electricity 

consumption during #OhmHours over time for longer than users that do not connect devices. 

OhmConnect notes that device saturation has increased among OhmConnect users over time, 

and its users adopt additional devices over time.  
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CHAPTER 2:  
Project Approach 

This study used behind-the-meter customer engagement platforms from two demand 

response providers: OhmConnect, Inc. and Chai Energy. These platforms allowed researchers 

to test two sets of research questions made possible by the different capabilities of each 

platform. OhmConnect’s large user base and multiple incentive designs were used for most of 

the nonexperimental analyses, and Chai Energy’s smartphone application has capabilities that 

allowed researchers to perform a randomized control trial. To conduct this study, a sufficient 

number of customers needed to be recruited to each customer engagement platform. These 

customers needed to be representative of different household characteristics – including 
income, household structure, climate zone, and utility13 – to study the effect of different 

demand response strategies across California. This section describes the methods used to 

recruit users. For information on how data were gathered from these users and transferred to 

researchers to be used in the analysis, see Appendix A.  

2.1 OhmConnect Engagement Platform 

2.1.1 Study Participant Recruitment for OhmConnect 

To conduct the identified analyses identified in this report, the research team needed access to 

energy consumption data for a large sample of users. OhmConnect provided the UCLA team 

with detailed data on energy consumption, event performance, and sociodemographic and 

geographic characteristics for 20,000 OhmConnect users. All analyses were carried out 

nonexperimentally on already-performed #OhmHours using nonpersonally identifiable 

information (non-PII) energy-related information for OhmConnect users across California. This 
section describes OhmConnect’s strategies for user acquisition.14  

User acquisition refers to getting users to sign up for the OhmConnect service. Demand 

response programs naturally have greater potential to reduce energy consumption during 

demand response events with more participants. Moreover, OhmConnect user acquisition 

ensured UCLA has adequate data to perform analysis on demand response behavioral patterns 

and general engagement. The sample of customers used in this study were recruited by 

OhmConnect using three user acquisition methods related to paid channels: social media 

campaigns, third-party paid leads, and, direct mail marketing.  

Social media campaigns: Social media forums allow companies to buy advertising campaigns 

so that their marketing targets a specific demographic. Specifically, OhmConnect used 

 
13 Customers were from each of the three major investor-owned utility (IOU) territories: Pacific Gas and Electric, 

Southern California Edison, and San Diego Gas & Electric.  

14 The user acquisition strategies discussed in this memo are tailored specifically to this study. Therefore, these 

strategies are independent of OhmConnect’s business and consequently not reflective of how OhmConnect scales 
the number of its users. Moreover, the results highlighted should not be used as reference points for the 

OhmConnect, Inc. business. 
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Facebook and Nextdoor, a community-based email newsletter and online posting network. The 

Facebook advertisements explained that participants could get paid for saving energy while 

helping the environment, while the Nextdoor ads emphasized earning money.  

Third-party paid leads: OhmConnect uses third-party marketing organizations to generate paid 

customer leads, which target promising customers. Paid leads help identify potential users via 

social media tools, and the marketing service provides data analytics to help focus advertising 

campaign efforts in channels that have higher user acquisition rates, making recruitment more 

cost-effective. These ads focused predominantly on the financial aspect of OhmConnect and 

targeted potential new users interested in ways to earn money or to become more financially 

savvy.  

Direct mail marketing: OhmConnect also acquired users using coupon mailers. One example 

using this method used the Valpak coupon book. This coupon book contains a variety of 

coupons from many different companies and is mailed directly to people’s homes based on a 

propriety list curated by Valpak. OhmConnect described its service within the coupon. Most 

coupons were combined with other financial incentives, such as a $20 gift card to Target upon 

signup. The “coupon” encouraged IOU users to use the URL to sign up for OhmConnect.  

Based on overall cost of acquisition, social media was the most expensive user acquisition 

method, followed by mail marketing. Third-party paid leads were the least expensive. The 

average cost of recruitment by customer for each of these methods is summarized in Table 1.  

Table 1: OhmConnect Costs of Acquisition 

Method of Recruitment Cost per Customer 

Facebook $89 

Nextdoor $34 

Direct Mail Marketing $15 

Third-party Paid Leads $5 

Source: OhmConnect, Inc. 

2.1.2 Study Participant Demographics for OhmConnect Sample 

In this study, UCLA used a randomly drawn sample of 20,000 OhmConnect users.15 These 

customers represent a variety of sociodemographic characteristics and geographic locations. 

Figure 3 shows the geographic distribution of OhmConnect customers across the state.   

 
15 The demographics and trends are for the sample of 20,000 users and not for the entire OhmConnect platform. 

Because these users were randomly selected, the trends should be representative of the trends in total Ohm 

users, but the levels will be off by some scalar factor. 
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Figure 3: Geographic Distribution of OhmConnect Customers 

  

Source: UCLA Luskin Center for Innovation. 

Table 2 shows the average sociodemographic characteristics of the study sample compared to 

the California population. To protect customer privacy, the demographics of each customer in 

the sample was unknown to researchers. This table, therefore, represents the average 

demographics based on the zip code in which each user is located.  

This table summarizes five key demographic variables by the average demographics of the zip 

code in which the users in the sample are located: percent white, percent homeowner, median 

income, proportion of California Alternative Rates for Energy (CARE) customers, and percent 

single-family home. Among represented zip codes in the sample, the mean is 44 percent 

white, and 81 percent single-family home ownership, both above the California mean of 38 

percent and 58 percent, respectively. The average median annual household income of 

represented zip codes is slightly above the California median of $67,739.  

Table 2: Demographics of OhmConnect Sample 

Demographic Sample California 

Home Ownership  55% 55% 

Median Income $73,246 $67,739 

Single-Family Home Share 81% 58% 

Average Annual Energy Use (kWh) 5,798 7,266 

Source: Sample statistics from UCLA and OhmConnect. California population statistics from United States Census 
Bureau and American Community Survey as of January 2019. 
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In the OhmConnect sample, 12 percent are CARE customers, 8 percent are on a TOU rate, 15 
percent own a PEV, 8 percent have solar PV panels, and 25 percent own automation devices.16 

Solar PV customers, PEV owners, users with automation devices, and TOU customers make up 

a minority of the overall sample. One major goal of the analysis in this report is to observe if 

these “energy-engaged” customers behave differently in response to events than less-engaged 

customers. About 4 percent of users adopt automation devices immediately upon joining, and 

about 14 percent adopt automation after 18 months. Finally, there is a large variation in 

customers’ average consumption during an event. Although mean consumption is around 1 

kWh, the median is 0.74 kWh, suggesting there are outlier high-energy users. Consumption 

during an event also varies dramatically by season. In summer, usage is closer to 1.5 kWh per 

event, while in winter consumption falls to 0.5 kWh per event. 

2.2 Chai Energy: Randomized Control Trial 
Chai Energy’s smartphone application provides participants with energy analytics and feedback 

that enables them to participate in demand response events. Researchers used this 

engagement platform to implement a multitreatment randomized control trial to identify the 

most effective demand response incentives and messaging for different customer classes.  

2.2.1 Adaptation of Chai Energy’s Platform and Implementation 

For this study, Chai Energy upgraded and modified its application to support the functionalities 

necessary to run a randomized control trial on thousands of customers. As described in more 

detail in Chapter 3, each demand response event delivers different types of messages, 

incentives, and formatting to different groups of study participants to test the identified 

strategies. Chai Energy developed its smartphone application capabilities to support the 

delivery of different financial incentives, messaging, and messaging times depending on a 

study participant’s assigned treatment group for this study. Chai Energy developed a system to 

allow alternative treatments to be distributed simultaneously and at different times to 

understand how the timing of messages could affect customer’s behavior, depending on the 

study participant’s assigned treatment group. Moreover, each demand response event has 

several event-specific push notifications at preset times. Chai Energy developed the capability 

of the application to send notifications to study participants at various times and for the 

various treatments.  

Furthermore, in support of this study, the Chai Energy team incorporated the ability to 

distribute financial incentives to study participants, when applicable.  Chai Energy also 

developed a researcher portal specifically for this study to allow researchers to view and 

export anonymized data from the different treatments and events at the study participant 

level. Researchers also manage and adjust the different treatments and groups through this 

portal. 

  

 
16 Researchers do not observe solar PV or PEV ownership directly; instead researchers must proxy for it using 

individuals’ energy-use patterns. Researchers define a user as having solar PV if he or she ever consumed 
negative energy in an hour. Researchers define a user as having a PEV if his or her maximum hourly usage is at 

least 5 kWh greater than mean usage (representing a PEV charge). 
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2.2.2 Study Participant Recruitment and Attrition for Chai Energy 

The project team recruited 2,989 participants for the Chai Energy study. The goal of 

recruitment was to have a large enough sample to (1) have sufficient power to determine with 

statistical significance the expected effects of each treatment group and (2) be representative 

of different household characteristics, including income, household structure, climate zone, 

and investor-owned utility (IOU) territory, to study the effect of different demand response 

signals across California.  

Chai Energy used several strategies to recruit study participants: targeted advertisements on 

Facebook and Google, advertisements on multiple radio channels, and advertisements on local 

media: KTLA (the local television news station in Los Angeles). About 9,500 users downloaded 

the application on their smartphones, but only 6,100 users registered for Chai Energy during 

the study recruitment period between December 2016 and August 2017. The average cost of 

recruitment per customer who registered for Chai Energy was roughly $7, which is lower than 
the market benchmark.17 However, to be enrolled in the study, each registered customer 

needed to provide Chai Energy with access to his or her energy consumption data, through 

Green Button Data. Green Button Data allows residential customers to access their 15-minute 

interval energy consumption information. The process for granting a third-party access to 

these data was arduous for customers, which resulted in only 24 percent of registered 

customers successfully providing data. This low registration rate increased the cost of 

customer recruitment to about $29 per customer. The Green Button Data presented an 

obstacle to Chai Energy, who lost several thousand customers when it was forced to migrate 

its existing customers toward the Green Button Data registration process, affecting the sample 

size of the study. The California Public Utilities Commission (CPUC) has since improved the 

process to make it simpler for customers to share their data with third parties, like demand 

response providers, which is discussed more in a later section. 

Customer recruitment faced unanticipated challenges, especially regarding the cost and 

method of recruitment. For example, because of the way the Facebook marketing platform is 

designed, Chai Energy reported that these advertisements seem to reach saturation rapidly 

(where people repeatedly see the same advertisement), diminishing the effectiveness of 

recruitment. Chai Energy used a slow to moderate rate of advertisements to address market 

saturation. However, this action limited daily customer recruitment. Some other marketing 

channels such as third-party paid leads have brought down the cost per acquisition but also 

potentially resulted in a biased customer sample. In terms of the success of the digital 

advertisements, only about a quarter of clicks resulted in registrations. While the 

advertisements may have been enough to pique a potential customer’s interest, it may have 

been insufficient to motivate action.  

A large number of participants were lost to attrition over the recruitment and study period 

because of a lack of engagement, illustrated in Figure 4. During months that researchers were 

administering demand response events, customer attrition averaged 2 percent per month. 

After demand response events ceased in October 2017, attrition increased rapidly. Forty-three 

 
17 The UCLA Luskin Center contacted several marketing firms and paid leads, which all reflected a cost of 

acquisition of around $20 per customer. 
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percent of users left the platform after four months of inactivity. The main reason for attrition 

is likely associated with a lack of demand response events during the winter.  

Figure 4: Chai Energy Customer Recruitment and Attrition over Time 

 

Source: UCLA Luskin Center for Innovation. 

2.2.3 Study Participant Demographics for Chai Energy Sample 

This section summarizes the demographics of the Chai Energy user sample. To protect 

customer privacy, identifying characteristics of participants are unavailable to researchers. 

Demographic and economic estimates are therefore based on a user’s zip code of residence. 

This means that a customer is assigned the ‘mean’ demographics of the zip code. Table 3 

shows the average demographic, economic, and energy-use characteristics for the customers 

in this sample compared to the California average.  

The marketing campaign resulted in a sample that was over representative of white 

populations and under representative of Hispanic and African American populations relative to 

the California population as a whole. On average, the customers in the sample live in zip codes 

that are well-off, with median incomes above $80,000 and median home values above 

$500,000.  

Finally, participants are heavy adopters of solar PV; about 20 percent have solar PV panels 

installed on their homes. This large share of solar PV customers suggests that study 
participants may be more energy-conscious than the average California consumer.18 It is likely 

that these customers who enrolled through the general marketing campaign may be 

representative of those who are early adopters of other technologies. As such, some 

populations may need to be targeted specifically to promote future demand response or 

energy conservation programs. These populations may not be as accessible through general 

marketing campaigns, and additional resources may be needed to recruit these 

underrepresented populations more directly.  

 
18 Data on solar PV ownership were imputed by whether a user ever had an hour with less than 0 kWh energy 

use. All other data came from the 2012-2016 American Community Survey (ACS). 
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Participants recruited from the general marketing strategy could also be a reflection of those 

who are more likely live in zip codes with higher proportions of single-family homes or own a 

smartphone. For example, participating with Chai Energy necessitates that customers own a 

smartphone to download the application and have internet access. As of 2016, an estimated 

77 percent of adults in the United States owned a smartphone, and 64 percent of lower-
income adults owned a smartphone.19  

Chai Energy’s customer recruitment relied primarily on digital advertisements through 

Facebook and Google. Social media advertising algorithms could also affect the sample. If this 

is the case, other recruitment strategies or media need to target those that may be 

underrepresented as a result of a more general marketing strategy. One solution could be 

reducing the need to have a smartphone to participate. For example, OhmConnect’s service 

requires only access to the internet and does not necessitate the use of its smartphone 

application, which makes it more accessible to a wider audience.  

Table 3: Chai Energy Sample Energy Characteristics and Demographics 

Demographic Sample California 

White  52% 38% 

Hispanic 26% 39% 

African American 4% 6.5% 

Home Ownership  62% 55% 

Median Income (by Zip Code) $81,802 $67,739 

Single Family Home Share 63% 58% 

Average Annual Energy Use (kWh) 7,469 7,266 

Has Solar PV Panels 20% - 

Has Automation Device(s) 10% - 

Source: Sample statistics from UCLA and Chai Energy. California population statistics from the United States 
Census Bureau as of January 2019. Average annual energy use (kWh) estimated based on the most recently 

available (2017) California Energy Commission “Electricity consumption by County” for all residential customers 
and the United States Census Bureau’s estimate for occupied housing units.  

The study sample is geographically representative of the state, shown in Figure 5. While there 

are concentrations of customers in Los Angeles County, San Diego County, Orange County, 

and the San Francisco Bay Area, the concentrations of the study participants fall similarly to 

the population density of California. Forty-three of the 58 counties in California have at least 

one customer included in this sample. The eight most represented counties are Los Angeles, 

San Diego, Orange, Santa Clara, Riverside, San Bernardino, Alameda, and Contra Costa. 

  

 
19 Pew Research Center. 2017. “Record Shares of Americans Now Own Smartphones, Have Home Broadband.”  
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Figure 5: Geographic Distribution of Chai Energy Customers 

 

Source: UCLA Luskin Center for Innovation. 
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CHAPTER 3:  
Effect of Demand Response on Energy 
Conservation  

By 2020, most California investor-owned utility (IOU) customers are expected to switch to 

time-of-use (TOU) pricing. To understand how TOU pricing will change consumer behavior and 

electricity demand, it is important to know how customers from different demographic and 

energy-use segments may react to higher prices during peak periods. This section provides 

estimates of these response rates using differential responses during critical energy periods, 

also known as demand response events. Although TOU pricing differs from demand response 

events on several dimensions (daily versus occasionally), responses to both require individuals 

to modify their typical consumption behavior during a predefined period. It is, therefore, likely 

that there is a correlation between the ability of customers to change consumption habits in 

the face of demand response events and TOU pricing. As such, these estimates can be of use 

to regulators designing policy.  

This analysis investigated customers’ propensity to reduce consumption during demand 

response events, on average and by relevant customer subgroup. This analysis could inform 

how TOU pricing affects future behavior. Moreover, if demand response providers are able to 

target events toward customer segments with higher levels of responsiveness, demand events 

will be a more effective tool for energy reductions during peak periods, which can lower the 

overall price of reducing electricity demand. 

3.1 Treatment Design 
To estimate the causal effect of a critical-peak-pricing event on customer energy use, it is 

necessary to identify a counterfactual: the amount a customer would have used had there 

been no event. By taking the difference between true usage and the counterfactual, 

researchers identified the true causal effect of the demand response event. As it is not 

possible to know a customer’s true counterfactual usage if the event had not occurred, 

researchers approximated this through the construction of an appropriate comparison group. 

A counterfactual was constructed by performing a difference-in-difference regression analysis. 

First, individuals’ event-hour usage was compared with their own usage in the same hour on 

other similar-temperature days when no event occurred. Then, the energy consumption of 
nonparticipants20 in the same zip code in the event hour was compared to their own 

consumption during the same hour on other same-temperature days. The difference in usage 

for nonparticipants between event and non-event days was then used to estimate the 

counterfactual change in usage for the participants on event and non-event days (in the same 

zip code). The average difference from the counterfactual is the non-experimental estimate of 

the effect of the event. For more information on the controls applied, see Appendix B.  

 
20 Nonparticipants typically are individuals who had not yet joined the OhmConnect platform at the time of the 

event but provided their historical consumption data when they joined. 
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In this analysis, researchers estimate the effect of a demand response event on consumption 

for different types of users. The effect is defined as the amount a user consumes beneath 

what he or she would have consumed in the absence of the demand response event. It is 

important to highlight that this is a different definition from those traditionally used to evaluate 

demand response programs, which estimate savings beneath an estimated baseline. In this 

analysis, researchers do not use that baseline because its accuracy differs across groups, 

which means that there would be bias in comparing responsiveness among these groups. As 

such, the consumption reduction estimates here should be compared only to other reports that 

examine reductions relative to baseline with caution, as they are measuring consumption 

reductions by different methods.  

The relative differences in electricity consumption behavior are not causal; the dimensions of 

heterogeneity may be correlated with other user characteristics that influence use. However, 

these differences among types of users nevertheless provide a suggestive guidepost for what 

types of users are more likely to be induced by #OhmHours to conserve energy.  

3.1.1 Discussion Around Treatment Design 

A potential method of estimating the effect of demand response events is a randomized 

controlled experiment, as in Gillan (2017) and as in Chapter 6 “Project Results: Financial 

Incentives and Messaging” in this report. The advantage of this approach is that it estimates 

an unbiased effect of the event for the population studied. However, there are two primary 

disadvantages of an experimental approach. First, unless OhmConnect was willing to run an 

experiment during each of its events, the sample of experimental events would be limited. 

This would make it difficult to have the statistical power necessary to examine heterogeneity in 

responsiveness, especially for phenomenon like demand events where the effect is already 

relatively small. Second, in many experiments, the sample is recruited specifically for 

participation in the experiment. As a result, study participants may be at their most engaged 

during this period, and their behavior may change in the long-run. In this section, researchers 

instead took a different approach for estimating responsiveness to #OhmHours. 

3.2 Results 

3.2.1 Spillover Effects of Demand Response 

This section presents the effect of demand response on consumption relative to what a user 

would have consumed in the absence of the event, rather than what they consumed relative 

to their baseline. This analysis included only weekday events, which make up the vast majority 

of all #OhmHours. With these caveats in mind, researchers found that exposure to an 

#OhmHour demand response event led to a 0.145 kWh reduction in usage, or a 18 percent 

reduction, relative to what they would have consumed in the absence of the event. This result 

is robust to an increasingly strict set of controls. For detailed information regarding statistical 

results and controls used, see regression tables in Appendix B.  

Researchers then estimated whether event behavior changed if a user also had an event the 

day before, which reflects a situation more closely related to a TOU setting. Importantly, it 

appears that having an event the previous day does not have a large effect on consumption 

reduction during the demand response event in the following day (shown in the orange bars in 

Figure 6). This finding suggests that individuals are not merely shifting usage to the next day 
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when an event occurs, which increases confidence that these findings may also apply to a TOU 

setting.  

Next, researchers repeated the same analysis as above but restricted the event sample to only 

users’ first 20 events. Figure 6 shows a user’s average consumption reduction in all events 
compared to the reduction in his or her first 20 events and events after the first 20.21 The 

effect sizes were around 30 percent larger during a user’s first 20 events than all events after. 

This finding implies that users had larger reductions in consumption during demand response 

events when they joined the platform, suggesting that user engagement falls over time.  

Figure 6: Demand Response Event Consumption 

 

Source: UCLA Luskin Center for Innovation.  

Researchers also examined spillover effects from demand response events by examining 

changes in energy consumption in the hours and days prior to and following a demand 

response event. The effect during the event is an order of magnitude larger than the effects in 

the hours and the days surrounding the event. These results suggest that demand response 

event energy consumption reductions were not offset by increases in surrounding hours or 

days, providing evidence that demand response events lead to overall reductions in energy 

and not shifting consumption to either the surrounding hours or the following days. For 

quantified results, see Appendix B.  

3.2.2 Effect of Demand Response by Temperature, Season, and Timing 

Researchers analyzed how responsiveness to demand response events differs by event 

temperature and season. Event responsiveness is larger during the summer season and on hot 

days throughout the year (when temperatures are above 90 degrees Fahrenheit), as shown in 

Figure 7. In summer, usage is closer to 1.5 kWh per event, while in winter consumption falls to 

0.5 kWh per event. As mean consumption also increases during these times, the differences 

 
21 Results shown for the researchers’ preferred specification.  
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are less extreme when viewed as proportions22 but are still higher in spring and especially 

summer (17 percent and 22 percent consumption reduction, respectively) than fall and winter 

(10 percent and 11 percent consumption reduction, respectively). These differences are likely 

driven by the use of air conditioning (AC) in the summer and on hot days. Users’ have a 

greater capacity to reduce consumption when they can turn of their AC. 

Figure 7: Demand Response Event Consumption by Temperature and Season 

 

Source: UCLA Luskin Center for Innovation.  

Finally, researchers examined how consumption reductions varied by the hour a demand 

response event started, shown in Figure 8. The largest consumption reductions occurred for 

events that started at 5:00 p.m. or 6:00 p.m. Because usage also increased during the 

evening, the largest proportional response was for events starting at 5:00 p.m., with a 

reduction of more than 20 percent (compared to 15 percent to 17 percent in other hours).  

Figure 8: Demand Response Event Effect by Start Time 

 

Source: UCLA Luskin Center for Innovation. 

 
22 Proportions are calculated by dividing the effect size by the mean usage. 
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3.2.3 Effect of Demand Response by Demographics 

This analysis examined how responsiveness to events varies across different demographic 

subgroups. Researchers ran the same model separately for each demographic subgroup, the 

results of which are shown in Figure 9. There were not large absolute or proportional 

differences across most subgroups. Differences in consumption reductions ranged from 0.01 to 

0.08 kWh, or about 2 to 4 percentage points, between users living in zip codes above versus 

below the median for income, percentage white population, and home ownership. The largest 

absolute difference was seen when comparing users living in zip codes above the median for 

single-family homes: those above the median reduced by 0.08 kWh more, although this is only 

a 2 percentage point difference. The largest proportional difference was between non-CARE 

and CARE users, with non-CARE users reducing by 7 percentage points more.  

Figure 9: Demand Response Event Load Reduction by Demographic Subgroup 

 

Source: UCLA Luskin Center for Innovation. 

3.2.4 Effect of Demand Response by Energy Profile 

Researchers examined whether users with different energy profiles had different reactions to 

OhmConnect events. Figure 10 shows the results. Users with solar PV, PEVs and automation 

were more likely to reduce consumption during #OhmHours. The most noticeable differences 

were seen between users with and without automation devices. Users who have automation 

devices used 47 percent less energy during an event relative to 13 percent reductions for 

those who do not. Among other energy-engaged users, PEV owners reduced their 

consumption by 25 percent during demand response events, while non-PEV owners reduced 

consumption by only 16 percent. It is difficult to do a similar comparison for solar because 

customers’ mean usage does not reflect the actual amount of energy used in the household 

but instead represents their net energy consumption (electricity consumed minus electricity 

produced), making the scaling factor unclear. In absolute terms, however, users with solar PV 

reduced energy consumption almost 2.5 times more than users without solar PV. Researchers 

cannot identify users with solar PV or PEV directly but instead estimate adopters based on 
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their energy profiles.23 Two possible explanations for these results are that users who have a 

more sophisticated understanding about their energy use save more during #OhmHours, or 

users who care more about the environment (and by extension adopted green-friendly 
technologies like solar PV and PEVs) are more willing to save during Ohm events.24  

Figure 10: Demand Response Event Consumption by Energy Profile 

 

Source: UCLA Luskin Center for Innovation.  

As shown in the previous figure, users on a TOU rate reduce slightly more than those not on a 

TOU. However, when researchers isolate users who are not energy engaged, users on a TOU 

rate reduce energy consumption by less than those on other rate schedules. This finding is 

important to consider as more customers switch to TOU, demand response events could 

become less effective. Conversely, when looking at energy-engaged customers, those enrolled 

in TOU actually reduce more. Figure 11 illustrates these results. 

  

 
23 Solar PV adopters are identified by anyone who ever experiences negative usage in an hour. PEV adopters are 

identified by anyone whose maximum hourly energy use is at least 5 kWh greater than their mean usage. (This 
represents the usage shocks from charging.)  

24 Standard errors on these estimates are larger than the estimates for non-PEV, nonsolar, and nonautomated 

users because the number of users who have these items is smaller. 
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Figure 11: Demand Response Event Consumption by Rate Schedule and Energy 
Profile 

 

Source: UCLA Luskin Center for Innovation. 

As noted, energy-engaged users are more likely to reduce consumption during #OhmHours. 

Non-CARE users are 9 percentage points more likely to have solar PV, PEV, or automation than 

CARE users. Researchers tested the idea that because non-CARE users, homeowners, and 

those living in single-family households are more likely to have solar PV, PEV, and automation, 

this drives their higher responsiveness. Figure 12 shows these results by comparing 

responsiveness among users in four categories: CARE customer and active energy user (solar 

PV, PEV, or automation); non-CARE customer and active user; CARE customer and non-active 

energy user; and non-CARE customer and non-active energy user. Researchers found that 

higher response rates in some demographic subgroups are driven partially by differential take-

up of solar PV, PEV, and automation. For non-energy-engaged customers, CARE and non-

CARE customers reduce by roughly the same amount. Among energy-engaged customers, 

non-CARE customers still reduce more.  

Figure 12: Demand Response Event Consumption by CARE Status and Energy 

Profile 

 

Source: UCLA Luskin Center for Innovation.  
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CHAPTER 4:  
Baseline Effects Project Results 

To maximize the effectiveness of conservation during critical periods, it is important to know 

how various aspects of demand events affect user-responsiveness. This analysis examined 

how the baseline set by demand response providers affect users’ conservation behavior.  

Demand response providers reward users during a demand response event based on their 

energy conservation relative to an assigned baseline. The baseline is the providers’ best guess 

for users’ consumption in the absence of an event. If customers consumed more energy than 

their baseline, they lost points, and if they consumed less than their baseline, they gained 

points. Points can be converted into cash rewards. Baselines are set based on the average of 

consumption in the same hour of the demand response event during the previous 10 

nonevent, nonholiday weekdays for weekday events and the previous four non-event, non-

holiday weekends for weekend events.   

The baseline level assigned to a user may affect his or her actual consumption decisions for 

several reasons. Most significantly, users may use their baseline value as a cue of how much 

they should reduce consumption. When OhmConnect users receive a notification about an 

event, they also receive information about what their baseline is and how it compares with 

their use over previous days. An example of what users see is in Figure 13. The ‘forecast’ 

communicates the user’s baseline in kWh. The figure also shows the user’s consumption over 

the previous ten days. Users can see how their consumption compares to their baseline by 

using the dashed line provided in the figure. If their baseline value is higher than their 

consumption from the previous day, they may not think that much conservation behavior is 

necessary. They could behave in the same way as the day before and still consume less than 

their baseline. Conversely, if users’ baseline value is set much lower than their consumption 

was in recent days, they may take this as a signal that greater behavioral action is necessary. 

This theory is known as information targeting. It is important to note that this is specific to 

how OhmConnect communicates information to its users; if a demand response provider did 

not provide information comparing baseline level and previous consumption, then it is less 

likely to see a large response.  

Figure 13: Baseline and Consumption Information OhmConnect Users Receive 

 

Source: OhmConnect, Inc.  
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Additionally, there is a robust experimental economics literature on the existence of loss 

aversion25, which suggests that people are generally more motivated to prevent losses than 

accumulate gains. Loss aversion may affect a user’s consumption behavior. When the baseline 

is set higher than a user’s theoretical true counterfactual use, a user would likely earn points 

without changing their conservation behavior. Any conservation behavior in this case will result 

in additional point gains. When a baseline is set lower than a user’s theoretical true 

counterfactual use, a user would likely not consume less than their baseline if they did not 

change their behavior. Therefore, any conservation behavior in this case will reduce the overall 

level of point losses. Thus, if loss aversion is affects behavior, researchers would expect user 

conservation behavior to respond to changes in the baseline even if the marginal price remains 

constant. Furthermore, users have a financial incentive to conserve under the baseline 

because OhmConnect users receive a larger financial reward when they accumulate ‘streaks’ - 

the number of events in a row in which a user consumes below their baseline. . Users may 

therefore choose to conserve more when baseline levels are set lower in order to ensure they 

maintain their increased financial incentive.   

This analysis quantifies whether user baselines have a causal effect on energy consumption 

during events using an econometric approach, called an instrumental variables strategy. Then, 

additional analyses disentangle what mechanisms may be driving this effect. Understanding 

how the event baseline affects user behavior is important because if baselines have a strong 

effect on conservation behavior, changing them is a relatively costless way to induce more 

conservation from a given event.   

4.1 Background 
For #OhmHours, individuals typically receive an alert that a demand event will occur the night 

before an event is scheduled to start. The user sees the baseline value beneath which he or 

she must conserve but is provided no information about the total number of points they will 

receive. Points vary across events but typically are worth about $1.50 for each kWh conserved.  

Individuals accumulated points by conserving energy below their baseline. Conditional on 

having a positive point balance, individuals’ marginal incentives were about the same 

regardless of whether they conserve below the baseline; the only difference was that if they 

consumed less than the baseline, they earned points, and if they consumed more than the 

baseline, they lost points. Because this analysis focused on individuals that face this constant 

marginal price, any individuals who started an event with a balance fewer than 100 points 
were excluded (about 15 percent of demand events in the sample).26OhmConnect baselines 

were set using California Independent System Operator’s (California ISO) 10-in-10 method, 

 
25 Tversky, Amos, and Daniel Kahneman. "Loss aversion in riskless choice: A reference-dependent model." The 

quarterly journal of economics 106.4 (1991): 1039-1061. 

26 One hundred points is the cutoff because only 25 percent of events end with a user earning or losing more 

than 100 points (and of course even if a user earns more than 100 points, he or she will still lose points for the 

first 100 points (equivalent to 0.65 kWh on average) that he or she is above the baseline.  
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which calculates a baseline using the average of a user’s energy use in the same hour of the 
event during their previous 10 non-event, nonholiday weekdays.27 28 

4.2 Treatment Design 

This analysis estimates how different baselines affect user behavior during demand events.   A 

naïve analysis may simply correlate energy consumption during demand response events with 

the baseline of the event. The problem with this approach is that because of the way baselines 

are calculated, they are likely correlated with other factors affecting a household’s recent level 

of energy use that may affect consumption, such as if a household recently purchased an air 

conditioner ( AC). In this case, because this household is now operating an AC, its 

consumption during event days may increase, as would its baseline (because recent non-event 

weekdays would also have higher electricity consumption due to AC use). However, the 

relationship between these two variables would be spurious; the higher baselines are not 

causing the higher level of electricity use. 

Accordingly, in order to estimate how varying the baseline affects consumption, researchers 

would ideally randomize baselines across individuals. Unfortunately, such an experiment is not 

feasible within the current OhmConnect architecture. Instead, researchers used a feature of 

the baseline calculation that can produce an as-good-as-random variation in the baseline, 

approximating the necessary randomization for this experiment: temperature on the ninth and 

tenth days of the baseline.    

The idea behind this empirical strategy is that temperature is strongly correlated with energy 

consumption, shown in Figure 14. As such, if there are more high-temperature days included 

in a customer’s baseline calculation, he or she is more likely to face a higher baseline. High-

temperature days in the non-event, nonholiday weekdays just before an event influence the 

baseline calculation and are also likely to be correlated with event-day temperature. However, 

temperatures on non-event days that make up the ninth or tenth non-event weekday in the 

baseline calculation are typically multiple weeks in the past and, therefore, unlikely to be 

correlated with either energy consumption or event-day temperature, especially conditional on 

controls for lagged temperature as included in our analysis. 

  

 
27 This is for weekday events. Weekend events were excluded from the sample.  
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Figure 14: Relationship Between Temperature and KWh Consumed During an Event 

 

Source: UCLA Luskin Center for Innovation. 

Researchers implemented an instrumental variables strategy using the maximum temperature 

on the ninth and tenth previous non-event nonholiday weekdays to instrument for the baseline 

a customer faces on a given event. The goal of the instrumental variables strategy was to 

isolate the random component of the baseline (that is, the component that is uncorrelated 

with other factors that might influence the outcome variable) and test whether changes in this 

random component affect the outcome variable. Since the random component of the baseline 

can affect only the outcome variable through the effect on the baseline itself, any effect 

observed must be caused by the baseline. Researchers used the temperature during the 

previous week as a way of isolating “random” variation in the baseline level during a given 

demand response event.  

In practice, this means researchers predict what a customer’s baseline will be for a given 

event using the temperature on the ninth and tenth previous non-event nonholiday weekdays 

on event consumption. Researchers controlled for high temperatures in the two weeks before 

the event and consumption in the week before the event. Researchers then estimated the 

effect of this predicted baseline level on actual consumption the day of the event. The 

assumption was that the high temperature on these ninth and tenth previous non-event 

nonholiday weekdays can affect consumption only on the event day through the related effect 

on the customer’s baseline. If this is true, then the relationship between the predicted baseline 

and actual usage would be the causal effect of changes in baseline on event consumption. The 

only other way that the previous week’s temperature might plausibly affect consumption on 

these days is through event-day temperature. Researchers found that empirically that there is 

no such relationship. Figure 15 shows how this empirical strategy leveraged the existing 

baseline calculation in more detail using a sample baseline calculation provided by California 

ISO.  
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Figure 15: Empirical Strategy Using California ISO’s Baseline Calculation Method 

 

Source: Underlying image by California ISO. Edited by UCLA to illustrate method. 

As an example of how this works in practice, one can imagine two #OhmHours that occur on 

identical 90 degree Fahrenheit days. Two weeks before one #OhmHour was unseasonably 

cool, leading to lower-than-average energy use. Two weeks before the other #OhmHour was 

unseasonably warm, leading to higher-than-average energy use. As a result of the previous 

weeks’ energy use, customers participating in the first #OhmHour will have a much lower 

baseline than customers participating in the second #OhmHour, even though conditions on 

the days of both #OhmHours are the same. Thus, if researchers saw differences in customer 

responsiveness between these two types of events, they could reasonably be attributed to 

changes in the baseline, as it is unlikely that the temperature more than seven days ago has 

large effects on contemporaneous consumption. This assumption holds empirically in this 

analysis, as the predicted baseline is uncorrelated with either temperature on the day of the 

event or consumption on the day following the event. 

In this analysis, all estimates controlled for high temperature in the two weeks prior to the 

demand response event, baseline usage in the week before the event, user fixed effects, and 

day fixed effects.29 In essence, these variables helped hold all other factors that might have 

affected consumption during a demand response event constant, ensuring that any changes 

seen must be due to a user receiving a higher or lower baseline. Researchers showed that 

conditional on the controls, high temperatures two weeks before the event are uncorrelated 

with both temperature on the day of the event and usage on the next non-event day following 

the event, which provides additional support that any observed changes on the event day are 

caused by changes in the baseline.   

4.3 Results 
Using this empirical approach, researchers found evidence that when users receive lower 

baselines holding all else equal energy consumption declines and vice-versa. On average, a 0.1 

 
29 Fixed effects control for nontime-varying characteristics of each variable (i.e. control for the fact that different 

users may have different average propensities to consume).  
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kWh decrease in a user’s baseline led to an additional 0.017 decrease in actual consumption 

during an event. For the average user in this sample, a 0.017 kWh decrease is about 1.9 

percent of hourly use. For detailed tables showing the results of all statistical regressions, see 

Appendix C. 

Next, researchers tested whether these effects vary across two major covariates: income and 

having automation. Figure 16 shows the results. Only customers without automation 

responded to changes in baseline, though because of the relatively small number of 

automated customers, the effects were relatively imprecise. If customers with automation had 

programmed their homes to respond automatically to an event notification, then there would 

be no scope for them to make behavioral changes when a baseline is high or low relative to 

true counterfactual use. This finding provides increased support that the observed differences 

above in consumption by baseline level are indeed caused by reactions to the baseline and not 

some other omitted factor affecting demand (as researchers would expect this would affect 

the automated customers as well).   

Next, researchers analyzed the differential effect of response to baseline changes by whether 

the household’s zip code’s income is above or below the sample median. The effects were 

driven largely by customers in below median income zip codes who reduced their consumption 

by an additional 0.022 kWh on average for every 0.1 kWh decrease in their baseline. This 

result suggests that these types of households may be more reliant on information targeting 

than those with higher incomes. Those above the median income reduced their usage by an 

additional 0.0076 kWh when their baseline decreased by 0.1 kWh, although this result is not 

statistically significant.  

These results suggest that baseline values have large effects on individuals’ conservation 

behavior during demand events. Researchers identified three hypotheses for why this might be 

the case in the introduction:  (1) dynamic incentives to maintain streaks motivate reductions in 

usage below baseline, (2) the baseline provides valuable information for consumers about 

when to target conservation behavior, or (3) there is loss-aversion, where customers are 

motivated by minimizing losses that could occur. Next, researchers tried to distinguish among 

these hypotheses by looking at how different types of users react to baseline changes. 

Specifically, researchers tested whether “high savers” or people who conserve on average 0.2 

kWh under the baseline, were more or less likely to change behavior in response to their 

baseline. This analysis could help distinguish between hypotheses because high savers were 

more likely to have long streaks, increasing the value of maintaining streaks. High savers were 

also more likely to be gold or platinum status members. These statuses increased the amount 

of points a user gained if he or she consumed less than the baseline (or lost if he or she 

consumed more than the baseline). As a result, they are expected to amplify loss aversion as 

the potential losses are much higher. Consequentially, if either dynamic incentives to maintain 

streaks or loss aversion are driving the results, one might expect to see high-savers have 

larger reactions to streaks. Conversely, if the results are driven by information targeting, one 

might expect non-high savers to have larger reactions to baseline changes as these users were 

likely to be less informed and therefore more likely to rely on heuristics.  

As seen in Figure 16, non-high savers responded more strongly to changes in baseline than 

high savers. For every 0.1 kWh decrease in the baseline, non-high savers reduced 

consumption by an additional 0.028 and high savers reduced by 0.016, or 2.8 percent and 2.2 
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percent, respectively. Although certainly not determinative, this result suggests that the 

observed results were more likely driven by information targeting than by dynamic incentives 

to maintain streaks or by loss aversion.   

Together, these results suggest that for demand response providers like OhmConnect that 

provide users with information about their baseline relative to past usage, baseline levels can 

have an important effect on overall consumption. This finding highlights the potential 

importance of non-price factors in determining user responsiveness to demand events.   

Figure 16: Change in Consumption for Every 1 KWh Decrease in Baseline 

 

Source: UCLA Luskin Center for Innovation. 
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CHAPTER 5:  
Nonlinear Incentives: Streaks and Statuses 
Project Results 

OhmConnect employs novel incentive structures to motivate users to conserve electricity 

during critical energy periods called #OhmHours. This analysis focused on OhmConnect’s 

programs offering nonlinear incentives: streaks and statuses. These programs offer nonlinear 

bonus incentives for conserving over an extended period or repeatedly conserving beneath a 

goal, respectively. The research team estimates the effect of the marginal incentive on 

willingness to conserve under OhmConnect's nonlinear incentives.  

To identify the effect of these additional incentives on overall consumption, the research team 

needed an appropriate control group to assess counterfactual conservation. However, given 

the structure of the data, researchers were not able to test whether those who receive a 

bonus used less electricity during events than they would have if they had not received a 

bonus. While not allowing a definitive assessment of the cost-efficacy of the bonus structure, 

this analysis provides insights into the role of marginal rewards in energy conservation.  

5.1 Background 
In addition to the base rate, participants can earn bonuses for consistent savings (streak) and 

for consistently saving significant amounts of electricity (status). Users can build streaks by 

consuming less than their baseline in consecutive demand response events. For every event 

an individual successfully consumes less than his or her baseline, he or she maintains any 

existing streak and extends it by one. If he or she consumes more than his or her baseline, his 

or her streak returns to zero. Each extension of the streak is rewarded with an additional 5 

percent points. For example, if the base rate is 100 points per kWh and the participant beats 

his or her baseline for the first time, the user would have a streak of one (5 percent bonus) 

and would be awarded 105 points per kWh saved. If his or her streak is five and he or she 

beats the baseline again, he or she would be awarded 130 points per kWh conserved as new 

streaks are immediately applied to point calculation. Consuming more than the baseline or 

opting out of an event or consuming more than the baseline, break a streak, and everything 

goes back to zero. Customers do not see their negative points amplified by the streak level 

they were in. Figure 17 shows an example of how a user’s streak and associated rewards are 

communicated.  
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Figure 17: Example of Streaks Reward 

 

Source: OhmConnect, Inc. 

OhmConnect participants can also earn status bonuses. At the time of this study, OhmConnect 

assigned active members into three status levels: silver, gold, and platinum. Assignment to a 

status is based upon the amount of energy saved relative to their baseline over the past 10 or 

more #OhmHours. To qualify as an Ohm gold member, a customer must save 15 percent 

beneath baseline on average for the previous ten events. To qualify as a platinum member, 

the customer must save 40 percent beneath baseline over the same period. Ohm gold 

members receive 1.5 times more points per #OhmHour, and Ohm platinum members receive 

2 times more points. In the event a customer consumes more than his or her baseline, the 

status level multiplier amplifies the negative points received. However, customers’ points 

cannot go below zero. Figure 18 provides more details about the status levels.  

Figure 18: Description of Status Levels 

 

Source: OhmConnect, Inc. 

5.1.1 Descriptive Analysis of Streaks and Statuses 

This section examines how streaks and status vary across customers to provide context about 

what types of customers benefit from these programs.  

Figure 19 shows the average streak length, status multiplier, and percentage electricity saved 

over the previous 20 events by a user’s event number. There are two important takeaways 

from these plots. First, as individuals get more experience with OhmConnect, they have longer 

streaks and higher status. This is in some part mechanical; long streaks require a user to 
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participate over a long period, and a user does not become eligible for higher status until 

having participated in at least 10 events. However, this improvement in streaks and status 

stagnates after about 20 events. For streaks, average length remains roughly constant after a 

user’s twentieth event at about a streak length of 3.5. For status, the average multiplier and 

average savings of users decline over time. These findings suggest that over time users may 

be learning how to do the minimum necessary to maintain streaks while not further reducing 

consumption. Indeed, the reductions over time in average percentage saved per event suggest 

that any learning about total conservation that takes place with long-run experience with 

OhmConnect appears to be outweighed by increasing apathy or disengagement.30 Another 

explanation could be that some conservation strategies become permanent. To combat this 

stagnation, a solution could be to make streaks harder to maintain at longer streak lengths. In 

light of the results in this analysis, OhmConnect has limited the length of a streak one 

customer can accumulate to 20. 

Figure 19: Analysis of Events over Time 

 

Source: Figures created by UCLA Luskin Center for Innovation. Data from OhmConnect, Inc. 

One concern with the above graphs is that they may reflect purely compositional changes. For 

instance, imagine most users join in the beginning of the summer, when consumption 

reductions are higher. If that were the case, one would expect to see large reductions early in 

a user’s OhmConnect career and more moderate reductions later. To control for this, 

researchers performed a regression analysis controlling for temperature, invariant user effects, 

and average zip code performance on an event. Differences observed here by event number 

are more plausibly caused by longer experience with OhmConnect itself. The results are 

consistent; as OhmConnect users have more events, they reduce their consumption by less, 

have shorter streaks, and have lower statuses. For instance, after a user’s fiftieth event, he or 

she reduces consumption by 0.05 kWh less electricity on average compared to his or her first 

demand response events. Similarly, users are 3 percentage points more likely to have a streak 

length of zero. They are also 6.7 percentage more likely to not have a gold or platinum streak 

compared to events 10 through 30. This suggests that users become disengaged over time. A 

detailed table showing these results is included in Appendix D.  

 
30 One concern with this analysis might be that only long-time users could have up to 100 events, while most 

users have only 10 events. As a result, the effects could be compositional. To account for this, researchers make 

the same graphs restricting the sample to only users with at least 100 events and find strikingly similar patterns.  
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Figure 20 shows the proportion of demand response events a user receives that they spend at 
various streak and status lengths.31 On average, nearly half of a user’s #OhmHours result in a 

streak length of zero, meaning they gain no additional incentives for consumption reductions. 

Around 25 percent of all of a user’s #OhmHours have streak length of six or higher, 

suggesting that a meaningful number of #OhmHours are paying out high streak bonuses. 

Similarly, roughly 60 percent of user #OhmHours have silver status, which has no reward 

multipliers. Together, these suggest that the majority of events are unaffected directly by the 

streak and status reward programs (although they may still have dynamic effects), while an 

important minority of these events result in the user receiving increased incentives for 

reductions.  

Figure 20: Proportion of User Events by Streak Length and Status 

 

Source: UCLA Luskin Center for Innovation. 

Figure 21 shows the same breakdown but by a user’s maximum streak or maximum status. 

Even though almost half of an average user’s events result in a streak length of zero, most 

users have at least one streak length of six or more. Only a small proportion of users have a 

maximum streak length of 0. More than 30 percent of users have at least one streak length 

greater than 10. Only 15 percent of users never have a streak longer than five. A similar 

pattern exists for status. Even though more than 60 percent of a user’s events have a status 

level of silver, nearly 80 percent of users reach gold or platinum status for at least one event. 

These results suggest that although most users do not consistently access streak or status 

bonuses, most have reached such rewards at least once. Since these events, in theory, 

provide strong incentives to conserve more, it is somewhat puzzling why users with the ability 

to reach higher streak and status levels do not remain at these levels consistently. These 

results suggest that most users do have the capacity to make large consumption reductions in 

response to events but choose not to do so as time progresses. Increases in long-run user 

engagement could lead to larger gains in user responsiveness. 

  

 
31 This excludes all individuals’ first 10 events as it is impossible to gain a status above silver during this time 

frame. 
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Figure 21: Proportion of Users by Maximum Streak and Status 

 

Source: UCLA Luskin Center for Innovation. 

Finally, researchers examined if some demographic or energy-use subgroups were more likely 

to have higher streak or status levels than others. As with the previous analyses, the 

demographics of each customer was unknown to researchers. A user is therefore considered 

to represent the average demographics based on the zip code in which the user is located. 

Table 4 shows summary statistics about user streak and status performance by demographic 

group, again excluding users’ first 10 events.  

Table 4: Proportion of Events by Streak and Status for Each Demographic Subgroup 

Subgroups 
Streak Length Status 

0 1-5 6-10 >10 Silver Gold Platinum 

Zips Above Median Share White 

Residents 
47% 26% 17% 10% 62% 22% 16% 

Zips Below Median Share White 

Residents 
49% 26% 16% 9% 66% 20% 14% 

Zips Above Median Own Home 47% 25% 17% 11% 63% 21% 16% 

Zips Below  Median Own Home 49% 26% 16% 9% 65% 21% 14% 

Zips Above Median Income 47% 26% 18% 10% 61% 23% 16% 

Zips Below Median Income 49% 26% 16% 9% 67% 19% 14% 

Non-CARE Customer 47% 26% 17% 10% 62% 22% 16% 

CARE customer 53% 26% 14% 7% 75% 16% 9% 

Zips Above Median Single Family Home 

Share 
48% 25% 16% 10% 64% 20% 16% 

Zips Below Median Single Family Home 

Share 
47% 27% 17% 9% 64% 22% 14% 

Source: UCLA Luskin Center for Innovation. 

The number in each column represents the proportion of events that falls into a given 

category for the average user. For instance, for individuals who live in a zip code above the 

median for proportion of white residents, 46.8 percent of events have a streak length of zero. 

There are no large differences in status across most demographic groups. The major exception 
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is income. Users in zip codes that are above the median in household income are five 

percentage points more likely to have events that begin in gold or platinum status, suggesting 

that these users save more consistently over time. Even more dramatically, users with CARE, 

an electricity rate assistance program for low-income households, are 12 percentage points 

less likely to have gold or platinum status for a given event and 6 percentage points more 

likely to be at a streak length of zero for a given event. There are three potential explanations 

for this result. One, lower-income households may conserve less electricity than high-income 

households. However, this explanation appears unlikely because in Chapter 3 researchers find 

that users living in zip codes both above and below median income save similarly in response 

to an event. Two, CARE customers are less able to save consistently and occasionally have 

days where they far exceed their baseline. This explanation makes sense intuitively; low-

income households may have a lower ability to smooth energy shocks. Three, it is possible 

that the way baselines are calculated systematically provides lower-income households with 

higher baselines.  

Table 5 shows these same statistics for different energy-use subgroups.32 There are much 

bigger differences among energy-use subgroups than demographic subgroups. Differences 

between customers with and without automation are particularly striking. Customers with 

automation are 17 percentage points more likely to have an event with a streak length above 

zero, and nearly 30 percentage points more likely to have a status better than silver. These 

types of engaged customers are much more likely to access the streak and status bonuses 

provided by OhmConnect. Customers with solar PV and customers that have below-median 

baselines are more likely to have gold or silver statuses.  

Table 5: Proportion of Events by Streak and Status for Each Energy-use Subgroup 

Subgroups 
Streak Length Status 

0 1-5 6-10 >10 Silver Gold Platinum 

Has Solar PV 46% 24% 17% 12% 57% 21% 22% 

No Solar PV 48% 26% 17% 9% 65% 21% 15% 

Has PEV 47% 25% 17% 11% 62% 20% 18% 

No PEV 48% 26% 17% 9% 64% 21% 15% 

Has Automation 33% 19% 22% 26% 39% 25% 36% 

No Automation 50% 27% 16% 7% 68% 20% 12% 

TOU Customer 47% 25% 17% 11% 62% 22% 17% 

Non-TOU Customer 48% 26% 17% 10% 64% 21% 15% 

> Median Baseline 49% 25% 16% 10% 67% 18% 15% 

< Median Baseline 47% 27% 17% 9% 61% 24% 15% 

Source: UCLA Luskin Center for Innovation. 

  

 
32 Researchers exclude a user’s first 10 events.  



 

40 

5.2 Treatment Design 
Researchers examined how extensions in a user’s streak or an increase in their status affect 

consumption reductions in future events. The analysis compared responses to #OhmHours 

among customers of different streak length and status levels. However, customers likely 

differed across a number of unobservable characteristics, which made it difficult to know if any 

observed differences were due to differences in streak or status or in other characteristics. 

Randomization into different streak length and status levels was not feasible for this study, so 

the research team could not simply compare between customers across groups.  

UCLA, therefore, evaluated the effect of earning higher rewards in OhmConnect’s streak and 

status programs by using nonexperimental regression discontinuity design methods. That is, 

comparing the performance of individuals whose performance on their last #OhmHour was 

either just above or below the threshold level necessary for receiving the associated streak 

and/or status reward.  

Since customers, especially those who do not use automation, cannot precisely control energy 

use, it is somewhat random whether a customer’s electricity conservation during an 

#OhmHour event is just above or just below his or her baseline. This means it is somewhat 

random whether a customer just misses or just maintains his or her streak or status. For the 

streak analysis, the research team compared the consumption of customers just above to the 

consumption of those just below the streak continuation threshold on future #OhmHour 

events. For the status analysis, the research team compared the behavior of customers just 

above or just below the status threshold on future #OhmHour events. This comparison 

allowed the research team to estimate how streaks and status affect a customer’s future  

conservation.  

For example, imagine that a customer needs to save more than 0.1 kWh relative to the 

baseline value during an #OhmHour to qualify for increased rewards on the next event. Some 

customers will happen to save 0.099 kWh and miss qualifying for additional savings, while 

others will save 0.101 kilowatt hours and just qualify. In this analysis, researchers assumed 

that random chance led some customers to consume electricity just below the threshold and 

others to consume electricity just above the threshold. Using this assumption, researchers 

then compared energy consumption and energy-saving investments from OhmConnect among 

customers who just qualified and just missed qualifying for each program in each event. 

Researchers attributed any differences between the two sets of customers to the effect of 

qualifying for either the streak or status program.  

Researchers estimated the effect of treatment by estimating how the relationship between x 
and y changes at the discontinuity.33 This estimation was done by estimating the shape of the 

function on either side of the discontinuity. For the analysis, researchers excluded users whose 

consumption was in the top and bottom deciles so that those outliers did not skew results. 

OhmConnect streak and status incentives could increase event conservation in two ways. First, 

the existence of these rewards may motivate all users to conserve more electricity. Because 

there is no variation across users in this motivation, researchers could not test this proposition 

 
33 Specifically, researchers estimated the local polynomial at the discontinuity using the MLE optimal bandwidth 

and robust standard errors. 
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empirically, but this is an important area for future research. Second, streak and status 

programs increase the marginal incentive for conservation and so individuals would be 

expected to save more. Researchers investigated this idea.  

5.2.1 Streak Method 

The streak rewards program is a unique incentive design that has not been evaluated in the 
context of electricity consumption and has received little attention in other domains.34,35 The 

goal of this analysis was to use available data to assess the marginal effect of maintaining and 

extending a streak on an individual's performance in the next event.  

Researchers thus used the previously described regression discontinuity approach to estimate 

the marginal effect of maintaining a streak relative to losing it (and the associated bonus) on 

energy consumption reductions. Researchers used statistical tools to estimate how average 

consumption changes across the discontinuity, where the baseline was equal to actual 
consumption.36 To increase precision, the regression discontinuity analysis included covariates 

controlling for baseline, temperature, the individual's event number, and his or her 

OhmConnect status before the event. 

This approach had several limitations. As a result, it is possible that researchers failed to 

detect a treatment effect even though the incentive design might be effective relative to the 

traditional flat incentive or a tiered incentive without a streak framing. First, there are many 

ways in which the treatment could affect motivation, and individuals might be affected 

differently. As a result, these effects might mask each other if individuals respond differently 

to the loss of the streak. Second, the design could plausibly increase consumer engagement 

over time or increase motivation generally, but if it does not lead to a marked change in 

motivation when individuals lose their streak, researchers cannot detect an effect.  

Researchers hypothesized several potential mechanisms through which streak maintenance 

and extension could affect subsequent consumption, including marginal financial incentive, 

medium maximization, moral licensing and compensation,37 and learning, described in detail 

below. While it would ultimately be interesting to estimate the relative efficacy of the streak 

incentive in comparison to a more traditional incentive structure, this estimation was not 

 
34 Renfree, I., D. Harrison, D., P. Marshall, P., K. Stawarz, K., and &A. Cox, A. 2016. “Don't Kick the Habit: The 

Role of Dependency in Habit Formation Apps.” In Proceedings of the 2016 CHI Conference Extended Abstracts on 
Human Factors in Computing Systems (pp. 2932-2939). ACM. 

35 Huynh, Duy, and Hiroyuki Iida. (2017). An Analysis of Winning Streak's Effects in Language Course of 
“Duolingo.”  

36 Estimation was done using the rdrobust package in R. For detailed description of the estimation assumptions 

and procedures, see "Cattaneo, M. D., N. Idrobo, and R. Titiunik. 2018. A Practical Introduction to Regression 
Discontinuity Designs: Volume I. or Calonico, S., M. D. Cattaneo, and R. Titiunik. 2015. “Rdrobust: An R Package 
for Robust Nonparametric Inference in Regression-Discontinuity Designs.” R Journal, 7(1), 38-51. 

37 Licensing and compensation describe the tendency for individuals to "balance" prior behavior when subsequent 

moral decisions are made.  
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possible with available data and a lack of an appropriate control group. As an experimental 

study is not possible, researchers cannot test these hypotheses.  

Marginal Financial Incentive 

If individuals are motivated by marginal financial incentives, one would expect that they would 

reduce their consumption more as they extend their streaks because they receive an 

increasingly large financial reward. Conversely, one would expect individuals to reduce their 

consumption less if the streak is lost because their compensation reverts to the lower base 

rate. Prior work in electricity consumption has suggested that households do not always 
respond to the marginal price of electricity38 and that the magnitude of marginal incentives 

seems to have a relatively modest effect on consumption during critical peak events.39 

However, it is possible that the design of the streak incentive could increase sensitivity to 
marginal price by increasing salience40,41 or the perception of relative magnitude.42  

If participants are motivated by marginal financial incentives, those who maintain and extend 

their streak would reduce their consumption more compared to those who lose it. That 

difference would be expected to increase as the length of the streak (and relative difference 

between marginal incentives) increases.  

Medium Maximization 

Work in marketing has shown that the “medium” of award (that is, the form of the award, 

such as points or money) can affect the amount of effort that individuals expend in a task 

even when the tangible reward is unchanged. For example, in one experiment, individuals 

were given points that could be exchanged only for ice cream, and different flavors cost 

different numbers of points. Researchers found that many participants worked longer to earn 

more points than they needed to purchase their preferred flavor, even though the points had 
no additional value.43 It is possible that, while the streak itself has no material value, 

participants are motivated to build and protect their streaks independent of the financial 

awards. While their effect has not been extensively studied, many learning and habit-building 

 
38 Ito, K. 2014. Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity 

Pricing.” American Economic Review, 104(2), 537-63. 

39 Gillan, J. 2017. “Dynamic Pricing, Attention, and Automation: Evidence from a Field Experiment in Electricity 

Consumption.” Working paper. 

40 Chetty, Raj, Adam Looney, and Kory Kroft. 2009. "Salience and Taxation: Theory and Evidence." American 
Economic Review. 99.4: 1145-77. 

41 Kahn, M. E., and F. A. Wolak. 2013. Using Information to Improve the Effectiveness of Nonlinear Pricing: 
Evidence From a Field Experiment. California Air Resources Board, Research Division. 

42 Hsee, C. K. and J. Zhang, 2010. “General Evaluability Theory.” Perspectives on Psychological Science, 5(4), 

343-355. 

43 Hsee, C. K., F. Yu, J. Zhang, and Y. Zhang. 2003. “Medium Maximization.” Journal of Consumer 
Research, 30(1), 1-14. 
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apps employ streak designs with no financial component to motivate participants.44 This 

suggests that streaks might motivate effort independent of the accompanying financial 

rewards. If participants are motivated to build streaks, one might expect to see greater overall 

conservation under this incentive scheme than under a system with identical financial rewards 

but no streak framing. However, given the structure of the data, researchers cannot estimate 

that overall effect.  

While medium maximization might increase overall effort, it does not produce clear predictions 

about the relative effort individuals would expend when they were maintaining an existing 

streak versus starting a new one. If individuals exhibit loss aversion, one would expect that 

individuals work harder to retain their streak than to rebuild a new one. If this were true, 

researchers would not be able to disentangle the effect of marginal financial incentives from 

medium maximization using existing data. 

Moral Licensing and Compensation 

OhmConnect emphasizes the environmental benefits of conserving in addition to the financial 

incentives. If prosociality, or benefitting others, is the driving motivation for some participants, 

one might observe moral licensing and compensation. Licensing and compensation describe 

the tendency for individuals to "balance" prior behavior when subsequent moral decisions are 
made.45,46 If moral licensing and compensation affect behavior, one might see laxity among 

individuals who have built a long streak or see increased effort after failing to meet their 

baseline. As a result, individuals who begin an event with a streak would reduce their 

consumption by less than those who lost their streak in the last event. Researchers did not 

detect this pattern in this analysis. 

Learning 

Individuals may make a greater effort in a subsequent event after failing to extend their streak 

because they learn about the amount of effort required to beat their baseline. If failing an 

event leads an individual to revise his or her estimation of how much effort is needed to 

maintain the streak, one would expect individuals that lose their streak to conserve a greater 

amount of energy than those who maintained their streak. This effect would be more 

pronounced when the participant is new to the program and has less knowledge of how 

actions translate into savings. However, researchers did not observe that effect even when 

restricting the analysis to early events. 

5.2.2 Status Method 

Like OhmConnect's streak-based incentive, the status incentive structure is novel, and the 

research team is not aware of any prior work that attempted to assess the effect of this type 

 
44 Renfree, I., D. Harrison, P. Marshall, K. Stawarz, and A. Cox. 2016. “Don't Kick the Habit: The Role of 

Dependency in Habit Formation Apps.” In Proceedings of the 2016 CHI Conference Extended Abstracts on Human 
Factors in Computing Systems (pp. 2932-2939). ACM. 

45 Zhong, C. B., K. Liljenquist, and D. M. Cain. 2009. Moral Self-Regulation: Licensing and Compensation. 

46 Merritt, A. C., D. A. Effron and B. Monin. 2010. “Moral Self‐Licensing: When Being Good Frees Us to Be 

Bad.” Social and Personality Psychology Compass, 4(5), 344-357. 
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of incentive structure on effort. While this incentive design clearly affects material incentives in 

predictable ways, the design could plausibly activate nonfinancial incentives. The research 

team used the same method as with streaks, regression discontinuity design, which is a 

statistical method to non-experimentally test differences between groups above and below a 

threshold. Researchers used a regression discontinuity approach to estimate the marginal 

effect of maintaining a status relative to losing it (and the associated bonus) on energy 

consumption reductions. The regression also controlled for the magnitude of the baseline, 

temperature, event number, and prior streak. 

Researchers identified several potential mechanisms through which status-based incentives 

could affect participant willingness to conserve. These hypotheses included marginal financial 

incentive, category preferences, and symbolic reward, described in detail below. It is possible 

that multiple mechanisms were at work and that there could have been heterogeneity of 

response within the population. Unfortunately, researchers were unable to definitively 

disentangle which mechanism was at work, given that an experimental study is not possible at 

this time. Without an appropriate control group, it is not possible to assess the overall effect of 

the incentive regime on conservation. However, researchers can employ a regression 

discontinuity to estimate the effect of moving between statuses.  

Marginal Financial Incentives 

Individuals who move into a higher status receive an increase in the marginal incentive they 

receive for reducing consumption. As a result, one would expect that individuals would be 

willing to engage in more inconvenient or uncomfortable conservation behaviors. However, 

this effect could be muted if those who reach these high levels of conservation (40 percent 

consumption reduction in the case of the platinum level) have already undertaken all 

reasonable conservation actions and simply have no further discretionary electricity to cut. 

While research on increasing block tariffs has suggested that individuals do not always 
respond to the marginal price of electricity,47 one would expect that the marginal incentive is 

made particularly salient by the status design.  

Moving into a higher status could therefore result in individuals conserving more during 

#OhmHours since they face a higher marginal incentive. Researchers could underestimate the 

marginal effect of the status incentive if those who are close to achieving the next status work 

harder to move into the next tier. Working harder to move into a higher status is essentially an 

investment in future earnings. That dynamic would increase conservation within the group 

being used as a control and would lead to an underestimation of the effect using the 

regression discontinuity design.  

Category Preferences 

One consistent finding of the literature on the use of social comparisons for energy 

consumption is that individuals who consume more than average expend considerable effort to 

decrease their use. On the other hand, those who learn that they consume less than average 

 
47 Ito, K. 2014. “Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity 

Pricing.” American Economic Review, 104(2), 537-63. 
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often respond by increasing their use.48,49,50,51 While the status award does not provide 

individuals with any information about peer behavior, they may exhibit a similar motivation to 

move into the relatively superior category or relax if they are already in that superior category. 

One would therefore expect to see individuals who are close to moving into the gold or 

platinum statuses to expend greater effort in pursuit of the higher status. Conversely, one 

might see those who are awarded gold or platinum status relax their efforts.  

Symbolic Reward 

While the study of symbolic rewards in economics is new,52 research in other domains 

suggests that rewards can increase motivation to contribute to public goods even when those 
rewards generate no material or reputational benefit.53 It has been hypothesized that this 

could occur by increasing an individual's perceived competence.54 There is a large body of 

work in psychology that has documented the role of perceived competence in intrinsic 
motivation across domains.55 If there is an effect of the reward, researchers would expect that 

those who narrowly move into a higher status will exhibit a marked increase in effort. 

Unfortunately, researchers are not able to disentangle the effect of symbolic reward from 

marginal incentive using the regression discontinuity design.  

5.3 Streak Results  
Researchers find no effect of extending the streak relative to losing it despite differences in 

marginal financial incentives. When researchers estimate the effect among an individual's first 

20 events, they find that those who extend their streak reduce their energy consumption more 

than those who have lost their streak if their prior streak was five or longer. For detailed tables 

showing the results of all statistical regressions, see Appendix D. 

 
48 Schultz, P. W., J. M. Nolan, R. B. Cialdini, N. J. Goldstein, and V Griskevicius. 2007. “The Constructive, 

Destructive, and Reconstructive Power of Social Norms.” Psychological Science, 18(5), 429-434. 

49 Allcott, H. 2011. “Social Norms and Energy Conservation.” Journal of Public Economics, 95(9-10), 1082-1095. 

50 Allcott, H., & T. Rogers. 2014. “The Short-Run and Long-Run Effects of Behavioral Interventions: Experimental 

Evidence from Energy Conservation.” American Economic Review, 104(10), 3003-37. 

51 Byrne, D. P., A. La Nauze, and L. A. Martin. 2017. “Tell Me Something I Don't Already Know: Informedness and 

the Impact of Information Programs.” Review of Economics and Statistics, (0). 

52 Frey, B. S. and J. Gallus. 2017. “Towards an Economics of Awards.” Journal of Economic Surveys, 31(1), 190-

200. 

53 Gallus, J. 2016. “Fostering Public Good Contributions with Symbolic Awards: A Large-Scale Natural Field 

Experiment at Wikipedia.” Management Science, 63(12), 3999-4015. 

54 Gallus, J., and B. S. Frey. 2016. “Awards: A Strategic Management Perspective.” Strategic Management 
Journal, 37(8), 1699-1714. 

55 Ryan, R. M., and E. L. Deci. 2000. “Self-Determination Theory and the Facilitation of Intrinsic Motivation, Social 

Development, and Well-Being. American Psychologist, 55(1), 68. 
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The following graph shows the relationship between the running variable (the percentage 

difference between baseline and actual consumption) and consumption in the next event. The 

analysis includes a visualization of the relationship between the percentage difference of 

baseline and actual consumption and consumption in the next event. If maintaining a streak 

changes behavior, one would expect a noticeable shift in the amount of electricity used by 

those who barely maintain the streak compared to those who barely lose it. The plots include 

a line fitted to the data and points that represent the average of local observations. As a 

result, researchers expected to see a shift in the function at the point where percentage 

difference is equal to zero. Figure 22 includes the entire sample. Appendix D includes 

additional graphs visualizing the discontinuity by streak length and by restricting the sample to 

the first 20 events (since engagement is observed to decline around that time). Researchers 

failed to visually detect a marked change in conservation in the next event at the discontinuity. 

There is no clear discontinuity in any of the graphs, suggesting that any effect of receiving the 

higher marginal incentive is small. Observations where the difference is positive (to the right of 

zero) exceed the baseline and will receive no bonus in the next event.  

There are several potential explanations for why increased conservation among those who 

maintain their streak is not seen. Participants may simply be insensitive to price level as 

observed in Gillan 2017 presumably due to inattention. Or there may be heterogeneous effects 

upon different sub-populations that researchers failed to control for. 

Figure 22: Visualizing the Discontinuity of the Entire Sample 

 

Source: UCLA Luskin Center for Innovation.  

The results of the regression discontinuity analysis largely concur with the visualization of the 

relationship. Researchers did not detect a statistically significant relationship between a user 

extending his or her streak and consumption in the next event. Appendix D includes the 

regression tables that show all streak analysis results.  

When restricting the sample to a user’s first 20 events, there is still no detectable overall effect 

of extending the streak. However, among those with a streak of five or longer, extending the 

streak is associated with a 0.088 kWh average reduction in the user’s consumption in the next 

event. Figure 23 shows the graph visualizing the regression discontinuity for this result. 
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Figure 23: Visualizing the Regression Discontinuity in the First 20 Events for 
Streaks Lengths Greater Than Five 

 

Source: UCLA Luskin Center for Innovation.  

To test whether different customer segments respond differently to the streak incentive, the 

research team repeated the analysis by demographic sub group. Researchers analyzed those 

in income-qualified rates (CARE and FERA), those not in income-qualified rates, those in each 

individual climate zones, and those with and without automation technologies. The analysis did 

not suggest that any of these subgroups exhibited a significant response to maintaining the 

streak and receiving the bonus incentive.  

The goal of this analysis was to identify how changes in marginal incentives associated with 

OhmConnect's streak design affect consumption. Though one might expect individuals to 

respond to the streak bonus, these findings are generally consistent with the literature. Other 
studies have demonstrated that electricity consumers fail to respond to marginal price,56 and 

other experiments using OhmConnect's platform have demonstrated a marked insensitivity to 
the level of incentive.57  

The findings are generally consistent with either of the following two scenarios. First, 

participants are largely inattentive to marginal price, even under the streak design. However, 

the incentive difference becomes salient and inspires greater effort when the bonus is 

sufficiently large and when individuals are more engaged. Second, the structure and framing 

of the streak incentive either increase the salience of the marginal financial or provide additive 

motivation via medium maximization. However, the effect is obscured because other 

individuals conserve more after failing an event due to moral cleansing and or learning. 

For a validity test of the regression discontinuity design methods, see Appendix E.  

  

 
56 Ito, K. 2014. “Do Consumers Respond to Marginal or Average Price? Evidence from Nonlinear Electricity 

Pricing.” American Economic Review, 104(2), 537-63. 

57 Gillan, J. 2017. “Dynamic Pricing, Attention, and Automation: Evidence from a Field Experiment in Electricity 

Consumption.” Working paper. 
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5.4 Status Results 
Researchers do not find an effect of changing status on consumption when looking at the 

entire sample. However, when controlling for previous status, researchers find that moving 

from silver to gold status leads to more consumption reductions in the next event. Researchers 

also find that receiving gold status appears to lead to an increased likelihood in investment in 

devices like smart thermostats. Researchers do not observe a statistical relationship between 

status and subsequent consumption when moving between gold and platinum levels. For 

detailed tables showing the results of all statistical regressions, see Appendix D. 

Researchers first plotted the percentage saved below the baseline in the past 10 events and 

consumption in the next period, shown in Figure 24. For each user, the average percentage 

saved over the past 10 events (x-axis) is plotted against the consumption in the event just 

after the user just misses or just maintains his or her status. Because the cutoff point for gold 

is 15 percent, anyone over this threshold receives the additional 1.5 times bonus in the next 

event. If that incentive induces a greater effort to conserve, one would expect to see an 

increase in consumption reductions at the discontinuity. Similarly, as individuals cross the 

platinum cutoff of 40 percent reductions, one would expect to see a marked reduction in 

consumption in the next event. However, the graphs do not reveal an obvious jump.  

Figure 24: Consumption in Next Event Compared to Past Consumption 

 

Source: UCLA Luskin Center for Innovation. 

It is possible that the experience of gaining status (moving from silver to gold) is 

psychologically distinct from losing status, which would result in different responses to the 

change in the marginal incentive. To isolate these effects, researchers again plotted the 

percentage savings in the past 10 events against consumption in the next event but grouped 

by users who had the same status in the previous event. These additional graphs are shown in 

Appendix D. It is still difficult to visually detect a clear effect. 

As in the streak analysis, researchers next estimated the treatment effect. The detailed results 

are included in Appendix D. Researchers failed to observe an effect of status on consumption.  

As with the streak analysis, researchers also examined effects among demographic subgroups, 

including those in and out of income-qualified rates (CARE and FERA), those in different 

climate zones, and those with and without automation. Researchers found no clear evidence of 

associations between status and consumption for any of these subgroups. The regression 

tables showing these results in detail are included in Appendix D. 
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Then researchers examined the effect of status on consumption two events after a user 

misses or maintains that status. Researchers found that the additional consumption reduction 

persists into the subsequent event, indicating that the effect is not so short-lived that it 

disappears after the first event. Moving to gold status leads to a 0.036 kWh reduction in 

consumption two events after the user gained that status.  

Researchers examine why gold status has a different effect for those who were previously in 

silver versus those who were already in gold. One potential reason is that the effect of gold 

status might diminish over time. This reason would suggest that status affects consumption 

via salience (increasing either the salience of marginal incentives or the salience of the 

symbolic reward). That salience would be at the highest point when participants move from 

silver to gold but would diminish over time barring another change in status. The effect 

persists into the next event (t+2) but may still diminish over time. Another explanation is that 

gold status induces a durable change in behavior that could be driven by the material incentive 

or symbolic award, but that losing that status leads to an even greater increase in effort. 

Losing gold status could increase effort because individuals who have lost their status are 

more aware (relative to those who have been in silver but are equally close) that they are 

close to the status cutoff and are willing to expend more effort to secure a higher financial 

incentive in future events. Or status losers may be dismayed at dropping into a lower category 

and are more motivated to move back to the higher status category.  

This analysis has many limitations. If different mechanisms are at work, researchers might 

underestimate effects. This underestimation could be the case if marginal incentives increase 

effort, but preferences to move up to the higher status also increase effort among those who 

are close to the threshold.  

5.4.1 Effect of Gaining Status on Automation 

In addition to actual consumption in the next event, researchers assessed whether changes in 

incentives increase the likelihood that individuals invest in automation technology. Researchers 

found a statistically significant effect of gold status on subsequent investment in automation 

technology within 50 days of receiving the new status. This finding means there is a difference 

in subsequent investment in automation between those who barely earned gold status versus 

those who barely did not. If the effect was just due to time, researchers would not see a 

difference between the two groups. Those who achieve gold status are 2.3 percent more likely 

to invest in automation. Researchers did not find that those who achieve platinum status are 

more likely to invest in automation. This may be due to the fact that most individuals who 

were considering automation already made the investment when they moved into gold status 

prior to platinum status. Figure 25 illustrates the proportion of users who invested in 

automation within 50 days after just gaining gold or platinum status. 
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Figure 25: Proportion of Users Who Invest in Automation After Gaining Status 

 

Source: UCLA Luskin Center for Innovation. 

For a validity test of the regression discontinuity design methods, see Appendix E.  
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CHAPTER 6:  
Incentives, Economic Benefits, and Moral 
Messaging (Chai Energy Study) Project Results 

As noted, this study aimed to understand what influences customer behavior regarding energy 

consumption during critical periods when the marginal price of electricity is high. Accordingly, 

this analysis examines how different types of financial incentives and messaging affects 

consumers’ willingness to change energy consumption during peak periods. As a secondary 

analysis, researchers analyzed how weather and household characteristics affect individuals’ 

participation in demand response events and responsiveness to different types of messaging. 

Currently, demand response events are used almost exclusively on hot days. However, as 

solar continues to grow as a part of California’s energy generation, the weather conditions 

under which demand shifts are necessary will change. As a result, understanding whether 

demand events have the same effectiveness on different temperature days is essential to 

maximizing the cost-effectiveness of demand events in the future. Further, relatively little is 

known about how the effectiveness of demand response events varies across households with 

different economic, demographic, and energy use characteristics. Better understanding these 

relationships allows policy makers and utilities to deploy demand response events in the most 

cost-effective way possible. 

6.1 Experimental Design 
To conduct this analysis, researchers partnered with Chai Energy to launch a randomized 

experiment to nearly 3,000 of its users. Chai Energy is a demand response provider that 

notifies users of critical periods through their free smartphone application and associated push 

notifications. More information on Chai Energy, its user recruitment, and its smartphone 

application can be found in section 1.1.1.  

In this analysis, Chai Energy users randomly assigned to the treatment group received 10 

demand events between September and November 2017 on 10 randomly chosen weekdays, 

with each event lasting two hours. Each user received two messages alerting them of each 

upcoming demand response event: one the night before the event and one an hour before the 

event was set to start. The users also received a notification after the event ended 

encouraging them to check the Chai Energy smartphone application to examine their progress.  

All customers receiving demand response event messages were informed that it was necessary 

to reduce energy during the event period to help the grid, along with an additional message 

depending on the treatment group they were randomized into: economic benefits message, 

moral tax message, or moral subsidy message. These are described in more detail in the 

Treatment 2 section. 

Customers receiving demand response events were also assigned to receive different financial 

incentives for reducing electricity relative to some baseline value. Baseline values were set 

using California ISO’s 10-in-10 method: the average energy use during the same two-hour 

period of the demand event in the 10 non-event weekdays preceding the event. Customers 
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received rewards in the form of Chai points, which could be cashed out using PayPal at the 

exchange rate $0.01 per point. To answer the questions described above, users in the 

treatment group were randomly assigned to treatment subgroups by level of financial 

incentive, type of message, time of the event, and event frequency.   

6.1.1 Treatment 1: Financial Incentives  

This treatment examined a question essential to improving the design of any demand event 

strategy: how willing are consumers to reduce consumption during certain periods in response 

to financial incentives? By understanding the average demand curve for reduction, it is 

possible to set the demand response event incentive closer to the optimal economic level. In 

this treatment, researchers randomly varied the level of incentives available to users during a 

demand response event to study the price elasticity of consumers’ willingness to reduce 

consumption. 

To assess these changes, the research team randomized roughly half of the treatment sample 

into this experimental condition. Customers in this treatment were randomly assigned into one 

of seven financial incentive levels:  

• Information only ($0) 

• $0.05 per kWh saved during peak period 

• $0.50 per kWh saved during peak period 

• $1 per kWh saved during peak period 

• $2 per kWh saved during peak period 

• A randomly selected price (1 of $0.50, $1, $2 with equal probability) per kWh saved 

during peak periods 

• $5 per kWh saved during peak period 

Customers were informed of their incentive level for a given event in the messaging they 

received before the event. The incentive level was also prominently described within the 

smartphone application on their personalized demand event page.  

Researchers also examined the extent to which this elasticity changes under different climatic 

conditions, by time of day, by access to instantaneous electricity consumption data, and 

among consumers of different demographic and socioeconomic status groups. These results 

are important because if significant heterogeneity in responsiveness exists (and researchers 

show that it does), it suggests that targeted demand response programs (in other words, 

focusing on the types of days or people that are much more responsive to incentives) may be 

much more cost-effective than a utility wide approach.  

6.1.2 Treatment 2: Economic Benefits and Moral Messaging 

In this treatment, researchers investigated how different messages about the purposes and 

consequences of participating in the demand response events affect consumers’ willingness to 

conserve electricity during peak times. Previous work has shown that moral messaging (with a 

particular emphasis on health effects) around electricity conservation can have large effects on 
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willingness to reduce consumption.58 This analysis builds on this by including two moral 

messages, one that emphasizes the positive consequences of participating in the experiment 

and the other that emphasizes the negative consequences of not participating. Understanding 

these differences is crucial to designing effective messaging-based interventions in the future.  

All participants in the treatment sample received one of three messages:  

• Economic benefits message that emphasized the cost-savings that occur with lower 

energy use  

• Moral subsidy message that emphasized the positive moral and social consequences of 

conserving electricity during peak times 

• Moral tax message that emphasized the negative moral and social consequences of not 

saving during peak times  

Researchers then examined whether the introduction of financial incentives with messaging 

induced larger or smaller levels of conservation. Users in this treatment sample were further 

randomly assigned to different incentive levels. Users receiving the economic benefits message 

were randomly assigned to any of the seven incentive levels described in Treatment 1. 

Customers receiving either the moral subsidy or moral tax messages were randomized into 

one of three financial incentive levels:  

• Information only ($0) 

• $0.05 per kWh saved during peak periods 

• $2 per kWh saved during peak period 

Table 7 shows the number of individuals randomized into each treatment. Individuals received 

the relevant framings in the messages that introduced them to the demand response event 

program, in the messaging alerting them to an upcoming event, and in the messaging 

congratulating them after finishing an event. Table 6 compares the messages customers 

received depending on their treatment group. Figure 26 and Figure 27 provide examples of the 

messages individuals saw in each treatment group.  

 
58 Asensio, Omar I. and Magali A. Delmas. 2015. "Nonprice Incentives and Energy Conservation." Proceedings of 
the National Academy of Sciences 112.6: E510-E515. 
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Table 6: Demand Response Event Messages Received by Each Treatment Group 

Messaging 

Treatment 

Group 

With Any Financial Incentive Without Financial Incentive 

Economic 

Benefits  

Utilities struggle to generate 

enough power during PrimeTime. 

Earn cash rewards by cutting your 

electricity use! 

Utilities struggle to generate 

enough power during 

PrimeTime. Lower your utility bill 

by cutting your electricity use! 

Moral Subsidy 

PrimeTime electricity produces 

pollution that causes childhood 

asthma and cancer. Save lives 

and reduce pollution by cutting 

your electricity use. Be a 

PrimeTime Hero and earn cash 

rewards! 

PrimeTime electricity produces 

pollution that causes childhood 

asthma and cancer. Save lives 

and reduce pollution by cutting 

your electricity use. Be a 

PrimeTime Hero! 

Moral Tax 

PrimeTime electricity produces 

pollution that causes childhood 

asthma and cancer. Don’t 

endanger lives and increase 

pollution in your community by 

wasting energy. Earn rewards by 

not being a PrimeTime Waster! 

PrimeTime electricity produces 

pollution that causes childhood 

asthma and cancer. Don’t 

endanger lives and increase 

pollution in your community by 

wasting energy. Don’t be a 

PrimeTime Waster! 

Source: UCLA Luskin Center for Innovation. 

Figure 26: Economic Benefits (left), Moral Subsidy (center), and Moral Tax (right) 

Messages With Financial Incentive 

     

Source: Chai Energy smartphone application 
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Figure 27: Economic Benefits (left), Moral Subsidy (center), and Moral Tax (right) 
Messages Without Financial Incentive 

     

Source: Chai Energy smartphone application 

6.1.3 Method 

Table 7 shows the number of individuals assigned into each group.  

Table 7: Number of Individuals Assigned to Each Treatment Group 

Message 

Group 

Financial Incentive per 

kWh 

Sample Size 

Control Control 640 

Economic 

Benefits 

$0 179 

$0.05 169 

$0.50 151 

$1 163 

$2 190 

Random incentive 276 

$5 70 

Moral Subsidy 

$0 196 

$0.05 190 

$2 204 

Moral Tax 

$0 170 

$0.05 207 

$2 184 

 Total 2,989 

Source: UCLA Luskin Center for Innovation. 

Half of all treatment individuals were also randomly assigned to different event times and 

frequencies. These individuals were randomly assigned to either the high- or low-frequency 
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event group, and in each event individuals were randomized into the 4:00 p.m. or 6:00 p.m. 

event start. 

Table 7 shows that the number of individuals in each treatment are quite small. This small 

number was not part of the original research design; it occurred because a technical error led 

to a substantial overestimation of the number of individuals available for randomization that 

was not discovered until the experiments had already been launched. Unfortunately, this 

means that this analysis lacks sufficient statistical power to examine many of the original 

research questions. Accordingly, to gain statistical power while still maintaining the ability to 

answer the key identified questions, researchers aggregated the subtreatments into the 

following groups: 

Incentive Levels: All messages are combined and use the following three groups: 

• Group 1: No incentive ($0) 

• Group 2: Small incentives ($0.05 to $1)  

• Group 3: Large incentives (greater than $1) 

Message: Only $0, $0.05, and $2 incentive levels were used as these are the only incentive 

amounts common across all framing groups. Researchers then categorized the remaining 

observations into the following three groups: 

• Group 1: Economic benefits message 

• Group 2: Moral subsidy message 

• Group 3: Moral tax message 

Message x Incentive Level: To examine whether the effect of message framings varies with 

incentive levels, researchers created the following six groups: 

• Group 1: Economic benefits message, no incentive 

• Group 2: Moral subsidy message, no incentive 

• Group 3: Moral tax message, no incentive 

• Group 4: Economic benefits message, any incentive 

• Group 5: Moral subsidy message, any incentive 

• Group 6: Moral tax message, any incentive 

For a more detailed explanation of the method, sample, and equations used in this analysis, 
see Appendix F.  

6.2 Results  
For detailed tables showing the results of all statistical regressions, see Appendix G. 

6.2.1 Financial Incentives 

Figure 28 shows the effect of financial incentives on customer’s willingness to conserve during 

peak periods. Across all events, providing some financial reward led to between 0.03 and 0.06 

kWh, or 1.7 percent and 3.4 percent, less electricity being used per hour during demand 

response events, but there did not appear to be large differences between higher or lower 
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financial incentives. Across all events, the absence of financial reward did not lead to any 

observable reduction in electricity consumption.  

Figure 28: Consumption Reductions by Financial Incentive Level 

 

Source: UCLA Luskin Center for Innovation. 

However, a different pattern emerged when examining the effects of the treatments on hot 
days (greater than 90 degrees Fahrenheit59) and nonhot days. On hot days, the effect of 

demand response events was much larger and demonstrated a clearer gradient across 

financial incentive levels. Relative to the control group, the highest incentive treatments 

(greater than $2 per kWh saved) lead to a 0.11 kWh reduction in energy use, the low 

incentive treatments lead to a 0.08 kWh reduction, and the information-only treatment lead to 

a 0.03 kWh reduction. 

Next, researchers examined the effect of the financial incentive subtreatments on energy use 

on hot and nonhot days relative to the control. Again, the trend was clear; on nonhot days 

demand response events did not work to reduce electricity usage even under relatively high 

financial incentives. In contrast, on hot days, even information-only demand events were 

effective, and response to demand events was relatively elastic to the level of incentives used, 

especially as these incentives increase. This result could be because consumers had an easy 

reduction strategy during hot days: they could turn down the AC. On cooler days, it can be 

more difficult to reduce, which may explain the lack of effect. For detailed results on this 

analysis, see Appendix G.  

6.2.2 Message Contents 

The next analysis examined the effect of different types of messages on customers’ energy 

consumption during demand response events. The economic benefits message, which 

emphasized the cost savings from reducing electricity or the potential to receive incentives, 

was more successful at reducing electricity consumption than the moral message, although it 

was only statistically significant on high-temperature days. On these days, the economic 

 
59 Using weather station readings throughout California, researchers interpolated temperature estimates by taking 

the inverse distance weighted average of all stations within 25 miles of a zip code centroid.  
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benefits message reduced usage by 0.14 kWh, or about 6 percent. The moral subsidy and 

moral tax messages resulted in a 0.05 kWh and 0.03 kWh reduction, or 2 percent and 1 

percent, respectively, although these results are not statistically significant. On days below 90 

degrees Fahrenheit, no measureable reduction was detected. Figure 29 shows the main 

results. 

Figure 29: Demand Response Event Message Results 

 

Source: UCLA Luskin Center for Innovation. 

These results differ from those found by Asensio and Delmas (2017). They found that 

exposure to information about the health and environmental effects of energy consumption 

(similar to the moral messages used in this study) led to greater energy reduction than 

information about cost savings. The difference in results could be driven by several factors. 

First, their research took place in the context of an informational intervention that targeted 

overall energy use rather than during demand events. Second, while the messaging in this 

study also discussed health and environmental effects of energy use, it was not identical to the 

Asensio and Delmas (2017) messaging. Finally, the financial and moral messaging also 

included financial incentives, which may change the effectiveness of both messages. Figure 30 

examines this possibility explicitly, comparing the effects of demand response events between 

the different messages without financial incentives (blue bars) and with financial incentives 

(orange bars). Because of the small sample size, it is hard to draw any firm conclusions from 

this table. However, on high-temperature days, the financial (cost-saving) message is more 

effective, especially when offered with a financial incentive. On cooler days and without 

financial incentives, none of the messages are particularly effective. 
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Figure 30: Effects of Messages With and Without Financial Incentives 

 

Source: UCLA Luskin Center for Innovation. 

6.2.3 Timing and Frequency 

This section presents whether energy consumption reductions are different depending on the 

demand response event frequency and time. Individuals in the high-frequency treatment 

received three events per week for the first two weeks and then one event every two weeks 

for the remaining eight weeks. Those in the low-frequency treatment received one event per 

week for all 10 weeks. The table shows results separately for hot and nonhot days. Demand 

response events started at 4:00 p.m. or 6:00 p.m. and lasted two hours.  

The results for the high- and low-frequency treatments are shown in Figure 31 and Figure 32. 

These figures only show effects on days with a high temperature above 90 degrees 

Fahrenheit, as no treatment type reduced usage on nonhot days, consistent with other results 

in this section. Generally, the low-frequency treatment was slightly more effective with either 

the economic benefits message or the moral messages. Consistent with the results in the 

previous section, the consumption reductions with the economic benefits message were larger 

for the high- and low-frequency groups compared to the moral messages. Financial incentives 

appear more effective in the low-frequency treatment. However, high-frequency events were 

more effective with no financial incentive. Conversely, the high-frequency treatment 

responded more to the no-financial incentive condition (although the difference is not 

statistically significant), possibly because the message was reinforced more frequently. 
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Figure 31: Demand Response Event Consumption by High and Low Frequency 

 

Source: UCLA Luskin Center for Innovation. 

Figure 32: Demand Response Event Frequency Consumption by Message and 

Incentive 

 

Source: UCLA Luskin Center for Innovation. 

Next, researchers examined how different event timing affects use. There is evidence for time-

of-day effects, illustrated in Figure 33 and Figure 34. Consumption reductions were greatest at 

4:00 p.m. and 5:00 p.m. compared to at 6:00 p.m. and 7:00 p.m. When examining how timing 

varied by message and incentive, researchers found that demand response events beginning 

at 4:00 p.m. resulted in slightly greater consumption reductions than those beginning at 6:00 

p.m. Events at 4:00 p.m. resulted in 0.04 kWh more energy saved in the financial incentive 

condition and 0.1 kWh more energy saved in the no-financial incentive condition. Events at 

4:00 p.m. reduced energy consumption by 0.02 kWh with an economic benefits message and 

0.08 more with a moral message. Figure 33 and 34 show these effects only for hot days as 

these effects are much larger, although demand response events at 4:00 p.m. were generally 

more effective across all days as well. With this analysis and with the OhmConnect analysis 

(Chapter 3), researchers found that 5:00 p.m. was the most effective time for demand 

response events. However, the effectiveness of demand response events at other times varied 

by demand response provider, message, and financial incentive. This finding suggests that 
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demand response event timing may be context-specific and relies on several varying factors. 

More qualitative work is needed to better understand what might be driving these results. 

Figure 33: Demand Response Event Consumption by Time 

 

Source: UCLA Luskin Center for Innovation. 

Figure 34: Demand Response Event Timing Consumption by Message and Incentive 

 

Source: UCLA Luskin Center for Innovation. 

6.2.4 Demographic Analysis 

Next, researchers examined whether energy consumption reductions differ based on whether 

or not a household has solar PV and the household’s income level (proxied by zip code median 

income). There are differences in effects between households with and without solar PV and 

differences between those with above- and those with below-median income, seen primarily 

on hot days. Solar PV customers are much more responsive to demand events than customers 

without solar PV. Figure 35 shows these results on hot days. Across all events, especially on 

hot days, customers with solar PV outperformed those without when they received an 

economic benefits message or a financial incentive. On hot days, customers with solar PV in 

the financial incentive group reduced usage by 0.24 kWh, or 10 percent, and those receiving 

the economic benefits message reduced usage by 0.32 kWh, or 14 percent. Customers without 

solar PV also responded to demand response events with a financial incentive and economic 

benefits message, but at much lower levels; customers without solar PV with financial 
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incentives reduced usage by around 0.06 kWh, or 2 percent, while those receiving the 

economic benefits message reduced by 0.12 kWh, or 4 percent. While moral messages were 

effective on hot days for those with solar PV, economic benefits messages were 6 percentage 

points more effective. Without a financial incentive, neither those with or without solar PV 

reduced their energy consumption during demand response events.  

Solar PV owners may be more likely to reduce than other customers for several reasons. First, 

solar PV owners may be more likely to engage in other types of automation that lowers the 

effort required to participate in demand response events. Second, solar PV owners may be 

more knowledgeable about energy use more generally, making participation easier. Finally, 

solar PV owners may be more concerned about the environment and, therefore, more 

receptive to messaging about energy conservation. More follow-up research is necessary to 

better understand why this group of users is more willing to reduce consumption during 

demand events. This finding suggests that solar PV owners could be targeted for a more 

focused demand response program.  

Figure 35: Results for Customers With and Without Solar PV 

 

Source: UCLA Luskin Center for Innovation. 

Figure 36 shows the differential responses to demand events based upon whether individuals 

live in zip codes that have median incomes above or below California’s median. Users living in 

zip codes below the median income reduced their consumption by more than those above the 

median income for all treatment groups. Similar to all previous analyses, on hot days, 

statistically significant effects were seen only for financial incentives and economic benefits 

messaging groups for below median income users. Large differences between income groups 

were not seen when looking at events on all days. These findings differ slightly from the 

demographic analysis completed with the OhmConnect customer sample (Chapter 3). 

Researchers believe this difference occurred because of the different compositions in customer 

bases between the two demand response providers. Notably, the median income is higher 

with the Chai Energy sample than with the OhmConnect sample, possibly affecting these 

results. More qualitative research is necessary to better understand this phenomenon.  
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Figure 36: Results for Customers by Median Income 

 

Source: UCLA Luskin Center for Innovation. 
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CHAPTER 7:  
Policy and Program Design Recommendations 

One of the primary purposes of these analyses is to inform effective demand response 

program design. These findings can be useful to demand response providers, and other 

relevant stakeholders in California and across the country, to maximize demand response 

program participation and effectiveness. This study focused on residential customers and 

evaluated different elements of demand response programs, including baselines, incentives, 

messaging, timing, and frequency. Moreover, researchers analyzed how these results varied 

by demographics and temperature conditions. Based on the results described in previous 

chapters, researchers conclude with the following key policy recommendations.  

7.1 Targeting Demand Response by User Demographics 
Demand response events are effective at reducing consumption, but reductions vary by 

program design and user characteristics. There were only minor differences in responsiveness 

among most demographic subgroups.  

“Energy-engaged users” (those with PEV, solar PV, or automation) had the greatest 

consumption reductions during demand response events. Policy support for programs that 

increase the uptake of these technologies could contribute to wider responsiveness during 

demand response events. Whether such a policy would be cost-effective depends on the 

expected value of the energy reductions on the grid, given the high cost of these technologies. 

Another important consideration is the differences between demographic groups in capacity to 

reduce consumption during events. Similar to how users’ have a greater capacity to reduce on 

hot days when they can turn of their AC, users with PEVs and users with above-median 

consumption have larger reductions to demand response events, likely because of their ability 

to reduce more. 

Customers with automation devices in particular are highly correlated with greater 

responsiveness to events across all demographic groups. Automation is key for residential 

demand response programs, as users with this technology exhibit high levels of 

responsiveness because the effort of reducing consumption is reduced. As researchers found 

some evidence that income differences were driven by differential adoption rates of these 

technologies, equipping low-income customers with automation devices could be one way to 

increase responsiveness and maintain engagement with demand response events. Because 

low-income users are more price-sensitive, but high-income users are more likely to have the 

resources necessary to easily respond to demand events, differences in event responsiveness 

for subgroups located between those two extremes could be masked by these two 

countervailing factors.  

Similarly, automation devices could be important for perpetuating the effectiveness of demand 

response events as more customers switch to a TOU rate. When looking at non-energy-

engaged customers, TOU users reduce less than users on other tariffs. This finding likely 

reflects the fact that customers who have voluntarily enrolled in TOU have already taken 

action to reduce their electricity consumption during peak times every day, resulting in more 
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limited ability to reduce consumption further during demand response events. However, these 

results are inverted when looking at energy-engaged customers. In this specific context, TOU 

customers reduced their electricity consumption by 37 percent, while non-TOU customers 

reduced their consumption by 27 percent. Favoring energy technologies such as automation 

seems essential to maintain high demand response efficiency, even as California transitions 

more customers to TOU pricing.  

7.2 Most Effective Financial Incentives and Messaging for Demand 

Response Events 
Users responded best to the economic benefits of demand response events. Financial 

incentives and messages emphasizing cost savings were two of the most effective program 

designs at reducing consumption. Offering an incentive is important to inducing consumption 

reduction, users do not respond linearly to greater financial incentives. These results suggest 

that, in general, using low incentives is likely most cost-effective for achieving energy 

reductions. Larger incentives should be used only when demand response providers need to 

increase electricity consumption reductions as much as possible, regardless of cost-

effectiveness. 

Furthermore, researchers found that the additional nonlinear financial incentives offered by 

maintaining successful streaks or statuses of energy consumption reductions with OhmConnect 

did not induce greater or more consistent reductions on their own. Downplaying the financial 

incentives in such programs, such as offering a flat incentive structure, might result in greater 

conservation per program dollar spent. Alternatively, these programs could emphasize the 

nonfinancial aspects of consistent performance, as it is possible that consumption reductions 

could be achieved by employing a streak or status framing without additional financial 

bonuses. It is also possible that the streak and status program designs have other positive 

effects that were impossible to notice due to the lack of control group, or that have non-

energy consumption related effects, such as cheaper customer acquisition, greater organic 

growth, or higher customer retention.  

Demand response providers should emphasize the cost savings that customers can achieve 

from reducing energy consumption. Messaging that emphasized the cost-saving benefit of 

demand response was more successful than messaging that emphasized either the benefits or 

consequences on health and the environment. Emphasizing cost savings resulting from 

electricity consumption reductions outperformed health and environmental messages even 

without the provision of financial incentives. This finding gives pause to the idea that moral 

messaging can be used as a substitute for financial incentives or even messaging about cost 

savings.  

7.3 Most Effective Times for Demand Response Events  
Demand response events were most effective in the spring and summer, especially on days 

hotter than 90 degrees Fahrenheit. This result is likely because on these days, users have a 

greater capacity to reduce consumption by turning off their AC. In the randomized control trial 

analysis, demand response events were relatively ineffective on days cooler than 90 degrees. 

Similarly, when non-experimentally analyzing the OhmConnect data, researchers also found 

less effectiveness on cooler days. This finding suggests that residential demand events may 
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not be an effective way of accomplishing these types of demand shifts on cooler days. As 

renewables become a larger part of California’s energy portfolio, it may become more 

necessary to manage demand not only on hot days, but on cooler days and when weather or 

lack of daylight cause sharp changes in renewable generation. More research is needed to 

understand how to better induce consumption reductions on cooler days when users have less 

capacity to reduce consumption. Moreover, with increasing renewables, the electrical grid may 

be faced more frequently with excess solar and the associated negative prices in the wholesale 

electricity market. Further research could examine how to induce users to increase 

consumption or shift demand to these times.  

Without automation devices, residential demand response relies on behavioral changes to 

energy consumption, which may constrain some users in their ability to participate in events at 

some times during the day. With OhmConnect and Chai Energy, demand response events at 

5:00 p.m. resulted in the greatest consumption reductions. At other times, the effectiveness 

varied by context and other factors, such as accompanying message, financial incentive, or 

demographics of users. More qualitative research is necessary to better understand what is 

driving this phenomenon. 

7.4 Maintaining Customer Engagement 
User engagement and user fatigue are important considerations for residential demand 

response programs. User engagement tends to fall over time. Researchers found that users 

reduced consumption by 30 percent more during their first 20 demand response events 

relative to later events. Moreover, researchers found when examining streak and status 

programs, which reward users for conserving over an extended period or repeatedly 

conserving beneath a goal, respectively, that a user’s streak length and status level decreased 

over time, suggesting users were less engaged over time. A central challenge of all demand 

response providers is how to not only attract customers, but ensure that they remain active 

participants in the long term. OhmConnect’s strategy of emphasizing automation may be an 

effective way to accomplish this goal. Customer automation adoption should be encouraged, 

particularly during a user’s first 20 events before a decrease in a customers’ willingness to 

undertake behavioral consumption reductions.  

Furthermore, a balance needs to be found between maintaining user engagement and 

demand response event frequency. While users who received a lower frequency of demand 

response events generally performed better per event, there is a risk of customers leaving the 

platform if they do not continually receive demand response events. With Chai Energy, 

researchers observed high levels of customer attrition after only a few months without 

demand response events. OhmConnect offers a potential solution to this as it conducts a few 

demand response events during the winter or when temperatures are not high to maintain 

customer engagement. Winter events may come with associated costs that can provide a 

barrier to demand response providers and new market entrants.  

OhmConnect’s innovative gamification of demand response events through its streak and 

status programs is possibly one of the reasons for their success in California. Given data 

limitations, the analysis in this study examined only the effectiveness of the marginal 

incentives offered by the streak and status programs and not the programs themselves. The 

streak and status programs may induce greater overall effort or lower attrition, even if 
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customers’ electricity consumption behavior does not exhibit sensitivity to their increasing 

marginal incentives. In fact, researchers found that when users gain gold status, which is 

when they reduce their consumption by at least 15 percent below their baseline for the last 

ten demand response events, they are more likely to invest in automation. Further research is 

needed to evaluate how the existence of streaks and statuses affect improved customer 

relationship with the platform compared to other demand response programs that do not offer 

gamified programs. Further research should also examine other tools to maintain user interest 

to ensure the long-term success of demand response.  
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CHAPTER 8:  
Benefits to Californians 

According to the U.S. Department of Energy, “the most important benefit of demand response 

is improved resource efficiency of electricity production due to closer alignment between 
customers’ electricity prices and the value they place on electricity.”60 This results in a variety 

of economic, health, environmental, and operational benefits for California, its residents, and 

its ratepayers, as described in this chapter.  

8.1 Benefits to California 

8.1.1 Greater Energy Reliability and Increased Safety 

As the share of renewable energy increases in California, the need for demand flexibility 

increases to ensure reliable, safe, and stable grid operations. Demand response providers have 

the ability to aggregate customers and reduce their electricity load at the most important 

times, adding flexibility to the load when most needed and avoiding risk of outages and 
electricity interruption.61 Moreover, the participation of electricity customers in maintaining grid 

operation helps defer further infrastructure investments.62 Finally, demand response provides 

wholesale market improvement as it helps reduce price volatility and diminish the market 
power of some energy providers at times of high stress on the grid and highly volatile prices.63 

One study showed that a 5 percent reduction in demand during the California energy crisis 
could have reduced costs by 50 percent.64 

8.1.2 Health and Environmental Benefits 

Demand response programs avoid the consumption of electricity when demand is abnormally 

high and requires a lot of expensive power supply, including peak power plants and other old 

fossil fuel generators. By reducing electricity consumption at those times, California helps 

reduce the emission of greenhouse gas and criteria air pollutants into the atmosphere.  

 
60 U.S. Department of Energy. 2006. Benefits of Demand Response in Electricity Markets and Recommendations 
for Achieving Them. 

61 Albadi, M., and E. El-Saadany. 2007. “A Summary of Demand Response in Electricity Markets.” Electric Power 
Systems Research, 78 (11) November 2008. 

62 Goel, L., W. Qiuwei, and W. Peng, 2006. Reliability Enhancement of a Deregulated Power System Considering 
Demand Response. 

63 Barbose, G., C. Goldman, and C. Neenan, 2004. A Survey of Utility Experience with Real-Time Pricing. Lawrence 

Berkeley National Laboratory. 

64 Caves, D., K. Eakin, and A. Faruqui, 2000. Mitigating Price Spikes in Wholesale Markets Through Market-Based 
Pricing in Retail Markets. The Electricity Journal 13(3):13-23. 
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In this specific solicitation, the CEC assumes that each kWh of electricity saved results in 0.73 
pounds of avoided carbon dioxide emissions.65 The demand response events conducted with 

OhmConnect and Chai Energy over this study period resulted in about 200 megawatt-hours 

(MWh) of cumulative electricity consumption reduction during peak times.  This reduction 

resulted in an estimated 66 metric tons of carbon dioxide (MTCO2e) in avoided emissions.  

The burning of fossil fuels for electricity generation also results in criteria pollutant emissions. 

Exposure to criteria pollutants is associated with adverse health impacts, including respiratory 

and cardiovascular issues. Disadvantaged communities have the most significant exposure to 

these emissions, including communities in nonattainment air basins for ozone, particulate 

matter (PM) 10 and PM 2.5; those with high poverty, minority populations, unemployment 

rates, or a combination thereof; and those with a high percentage of age-sensitive 

populations. The energy consumption reductions that occurred during this study period 

reduced the need for electricity generation at times when it was most needed, thereby 

avoiding the emission of these criteria pollutants. A reduction in these pollutant emissions can 

improve public health of the most vulnerable Californians. 

8.2 Benefits to Electricity Ratepayers in California 

8.2.1 Study Participant Benefits 

First, electricity customers who participate in demand response events reduce their electricity 

usage, resulting inevitably in bill savings compared to what it would have been if they 

consumed more electricity. These financial savings are even higher for customers consuming 

electricity in higher consumption tiers and customers enrolled in TOU rates. In total, 

participants saved 200 MWh during the study. Based on the monthly average price of 
electricity calculated by the California Public Utilities Commission,66 this collective reduction in 

consumption would result in $34,700 in direct bill savings for participants. 

Then, participants who successfully reduce their consumption compared to their baseline could 

earn money if the demand response provider offers a financial incentive for successful 

participation. In the study conducted with Chai Energy, $1,700 incentives were distributed to a 

portion of the study participants and paid for with CEC funds. In the study conducted with 

OhmConnect, participating customers earned about $1 million over two years without any 

financial contribution from the CEC.  

8.2.2 Nonparticipant Benefits  

The benefits of this study and demand response in general are considerable for 

nonparticipants as well. Demand response results in better use of existing generation 

resources (including renewable energy and fossil fuel) and transmission and distribution 

assets. A more efficient use of the infrastructure defers investments that California ratepayers 

will not have to pay. A reduced load at critical times, when prices are high, not only results in 

 
65 California Energy Commission 2015.  “Grant Funding Opportunity: Advancing Solutions that Allow Customers to 

Manage Their Energy Demand.”  

66 California Public Utilities Commission. 2018. California Customer Choice: An Evaluation of Regulatory 
Framework Options for an Evolving Electricity Market.   
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cheaper wholesale rates for all customers, but reduces the need for short-term capacity, 

resulting in fewer investments in generation capacity. In some regions of the grid that are 

congestion-constrained, one could also imagine that demand response can reduce the cost of 

congestion as well as defer distribution and transmission infrastructure investment. All these 

avoided costs are reflected in the price of electricity for participants and nonparticipants. For 

example, OhmConnect claims that each demand response it has in summer displaces four 
power plants.67 Finally, to the extent that demand response avoids greenhouse gas emissions 

in the electricity sector, it may also reduce the amount of allowances that electricity 

distribution utilities have to purchase in the cap-and-trade auction market. This reduction also 

reduces the overall cost for electricity customers in California.  

  

  

 
67 OhmConnect. 2019. Home page.  
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GLOSSARY AND LIST OF ACRONYMS 

Term Definition 

AC Air conditioner 

Baseline 

An estimate for how much electricity a user would have consumed without 

a demand response event. Users are often rewarded for their consumption 

reductions relative to their baseline. The current method for calculating 

the baseline is California ISO’s method, which is the user’s average 

consumption in the same hour of the demand response event during the 

previous 10 non-event, nonholiday weekdays.  

CARE 
California Alternative Rates for Energy. This rate schedule offers a 

percentage discount for low-income customers on their electricity bill.  

Chai Energy A demand response provider. 

CPUC California Public Utilities Commission 

Demand 

response event 

An hour or a few hours during critical electricity demand periods when 

demand response providers alert participants to shift or reduce their 

energy consumption.  

Demand 

response 

provider 

An entity that aggregates customer energy consumption changes at 

necessary times.  

CEC California Energy Commission 

EPIC 

Electric Program Investment Charge, is research funding administered by 

the California Energy Commission, Pacific Gas and Electric, San Diego Gas 

& Electric, and Southern California Edison.   

FERA 
Family Electric Rate Assistance. This rate schedule offers a percentage 

discount for low-income customers on their electricity bill. 

Information 

targeting 

A theory that users use informational cues as guidance for behavior, such 

as using a baseline as a cue for the magnitude to which a user needs to 

adjust their energy consumption behavior.  

IOU Investor-owned utility 

kWh 
Kilowatt-hour. A unit of electricity, one kilowatt-hour is equivalent to the 

amount of electricity generated by one kilowatt for one hour.  

Loss aversion 
An economic theory that suggests that people are generally more 

motivated to prevent losses than accumulate similarly sized gains. 

Metric ton 
A unit of measurement. 1 metric ton is equivalent to 1.10231 United 

States tons.  

MTCO2e Metric tons of carbon dioxide equivalent 
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Term Definition 

MWh Megawatt-hour, a unit of electricity equivalent to 1,000 kilowatt-hours.  

OhmConnect A demand response provider. 

#OhmHour OhmConnect’s name for a demand response event.  

PM 
Particulate matter, a type of air pollution, is composed of small solid and 

liquid particles. 

PEV Plug-in electric vehicle 

PG&E 
Pacific Gas and Electric, an investor-owned utility that provides gas and 

electricity in Northern California.  

PrimeTime Chai Energy’s name for a demand response event.  

SCE 
Southern California Edison, an investor-owned utility that provides 

electricity in Southern California.  

SDG&E 
San Diego Gas & Electric, an investor-owned utility that provides gas and 

electricity in San Diego County and part of Orange County.  

Solar PV Solar photovoltaic. A type of solar panel used to generate electricity.  

TOU 

Time of use. Refers to a rate in which users are charged different 

electricity rates per kWh depending on what time of day the electricity is 

consumed.  

True 

counterfactual 

consumption 

The actual amount of electricity a user would have consumed in the 

absence of a demand response event. 

UCLA University of California, Los Angeles 
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APPENDIX A: 
Data Collection and Data Transfer to UCLA 

The University of California, Los Angeles Luskin Center for Innovation (UCLA), received 

household electricity consumption and other relevant data from Chai Energy and OhmConnect. 

These demand response providers collected data from users through Green Button Data, 

which allows residential customers to access their 15-minute interval energy consumption 

data. Customers within the three main California IOU territories have access to their Green 

Button Data. This data access allows users to participate fully in demand response events, as 

demand response providers are able to quantify their energy consumption reductions during 

events and subsequently reward them.  

There are steps a user must take to provide a demand response provider with their data. For 

Chai Energy, users must first download the smartphone application. For OhmConnect, users 

must first sign up by email, Facebook, or Google on the OhmConnect website landing page. To 

become active users, users then must register their account with their utility provider to grant 

demand response providers permission to obtain access to the users’ utility data. 

Users sign up via a streamlined process that allows them to connect their electric meter 
information through software protocols. The Open Authorization (OAuth)68 click-through 

authorization process provides customers with a streamlined and simplified means to share 

their data with third parties. The process provides customers, third parties, utilities, and policy 

makers with a safe and secure method to authorize data sharing. OhmConnect’s click-through 

process uses OAuth 2.0 technology and is similar to what many website service providers use 

to allow customers to create an account on a website using credentials from another service, 

such as Google or Facebook. OhmConnect noted that the new OAuth 2.0 click-through process 

improved customer conversion rates from signups to active users, primarily due to customer 

familiarity with OAuth and the automatic approval of the data-sharing agreement once the 

customer completes authorization. OhmConnect implemented the click-through process for 

each of the three main California IOUs, shown in Figure A-1. This process also reduced the 

barrier to customer recruitment that posed a significant challenge for Chai Energy. 

  

 
68 The Open Authorization (OAuth) click-through authorization process was approved by the California Public 

Utilities Commission in Resolution E-4868. 
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Figure A-1: Click-Through Example 

 

Source: OhmConnect, Inc.  

Chai Energy also has access to higher-resolution consumption data for Chai Pro customers. 

Chai Energy Pro customers have gateway devices, which interface directly with a user’s smart 

meter to collect real-time energy consumption data. Chai Pro gateway devices request usage 

data from the smart meter every 7-10 seconds.  

Chai Energy and OhmConnect then transferred this collected data to UCLA for analysis. Chai 

Energy developed a researcher portal to allow researchers to manage data from the study 

participants. The web portal provided (1) a connection of Chai Energy’s backend systems and 

data to a web interface; (2) organized access to key participant information, energy 

consumption data, data analytics, and demand response event performance; and (3) the 

ability to create, manage, and administer demand response events. Chai Energy provided 

UCLA with data on hourly energy consumption for each customer, zip code, annual energy 

usage in the year prior to the start of the experiment, and whether the customer had a Chai 

Pro gateway device. OhmConnect provided UCLA with data on hourly energy consumption for 

each customer, zip code, and energy consumption in the previous year through an encrypted 

data transfer for a random sample of 20,000 OhmConnect users. 
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APPENDIX B: 
General Demand Response Regression Tables 

Table B-1 shows results for consumption during a demand response event under increasingly 

strict controls. Columns (3) and (6) show researchers’ preferred specification. Columns (4) 

through (6) estimate whether event behavior changed if a user also had an event the day 

before, which reflects a situation more closely related to a TOU setting. Table B-2 shows the 

same analysis but restricts the sample to a user’s first 20 demand response events. 

Table B-1: Demand Response Event Consumption 

VARIABLES 
(1) 

kWh 

(2) 

kWh 

(3) 

kWh 

(4) 

kWh 

(5) 

kWh 

(6) 

kWh 

Event -0.139*** -0.142*** -0.145*** -0.136*** -0.140*** -0.142*** 

(0.0126) (0.0127) (0.0135) (0.0123) (0.0126) (0.0133) 

Event Prev Day    -0.0250* -0.0231* -0.0263** 

   (0.0131) (0.0137) (0.0122) 

Observations 62,652,773 62,559,677 61,973,403 62,652,773 62,559,677 61,973,403 

R-squared 0.565 0.588 0.633 0.565 0.588 0.633 

User x Temp FE Y Y Y Y Y Y 

User x Hour FE Y Y Y Y Y Y 

Day x Hour FE Y Y Y Y Y Y 

User x Temp x 
Hour FE 

N Y N N Y N 

Day x Zip Code 
FE 

N N Y N N Y 

Dep. Var. Mean 0.796 0.796 0.796 0.796 0.796 0.796 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation 
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Table B-2: Demand Response Event Consumption During First 20 Events 

VARIABLES 
(1) 

kWh 

(2) 

kWh 

(3) 

kWh 

(4) 

kWh 

Event -0.176*** -0.171*** -0.135*** -0.132*** 

(0.0175) (0.0166) (0.0130) (0.0129) 

Event_before  -0.0638***  -0.0278** 

 (0.0217)  (0.0133) 

Observations 61,187,519 61,187,519 61,742,146 61,742,146 

R-squared 0.634 0.634 0.634 0.634 

Sample 1st 20 Events 1st 20 Events After 20 Events After 20 Events 

User x Temp FE Y Y Y Y 

User x Hour FE Y Y Y Y 

Day x Hour FE Y Y Y Y 

User x Temp x Hour FE N N N N 

Day x Zip Code FE Y Y Y Y 

Dep. Var. Mean 0.786 0.786 0.788 0.788 

Robust standard errors in parentheses.  *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Table B-3 and Figure B-1 show the spillover effects of demand response event consumption 

reductions into the two hours before and two hours after an event. Table B-4 and Figure B-2 

show the spillover effects of demand response event consumption into the two days before 

and two days after an event.  

Table B-3: Demand Response Event Spillover Effects Into Hours Surrounding Event 

VARIABLES 
(1) 

kWh 

(2) 

kWh 

(3) 

kWh 

(4) 

kWh 

(5) 

kWh 

Event -0.0130*** -0.0266*** -0.146*** -0.0496*** -0.0162*** 

(0.00244) (0.00344) (0.0136) (0.00611) (0.00193) 

Observations 55,987,133 55,995,402 55,995,484 55,986,922 55,742,886 

R-squared 0.639 0.639 0.637 0.638 0.639 

Hour Relative 
to Event 

-2 -1 0 1 2 

User x Temp 
FE 

Y Y Y Y Y 

User x Hour FE Y Y Y Y Y 

Day x Hour FE Y Y Y Y Y 

User x Temp x 
Hour FE 

N N N N N 

Day x Zip Code 
FE 

Y Y Y Y Y 

Dep. Var. 
Mean 

0.803 0.803 0.803 0.803 0.803 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation  
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Figure B-1: Demand Response Spillover Effects Into Hours Surrounding Event 

 

Source: UCLA Luskin Center for Innovation 

Table B-4: Demand Response Event Spillover Effects Into Days Surrounding Event 

VARIABLES 
(1) 

kWh 

(2) 

kWh 

(3) 

kWh 

(4) 

kWh 

(5) 

kWh 

Event -0.0684*** -0.0913*** -0.251*** -0.115*** -0.111*** 

(0.0210) (0.0214) (0.0206) (0.0177) (0.0205) 

Observations 3,949,939 4,036,496 4,075,622 4,042,521 3,943,299 

R-squared 0.761 0.759 0.759 0.759 0.762 

Days Since Event -2 -1 0 1 2 

Dep. Var. Mean 6.938 6.936 6.926 6.927 6.923 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Figure B-2: Demand Response Spillover Effects Into Days Surrounding Event 

 

Source: UCLA Luskin Center for Innovation. 

Table B-5 shows how demand response event consumption varies by temperature and season. 

Table B-6 shows how demand response event consumption varies by the hour the event takes 

place. Table B-7 shows how demand response event consumption varies by demographic 

subgroup, and Table B-8 shows how demand response event consumption varies by a user’s 

energy profile.  
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Table B-5: Demand Response Event Consumption by Temperature and Season 

VARIABLES 
(1) 

kWh 

(2) 

kWh 

(3) 

kWh 

(4) 

kWh 

(5) 

kWh 

(6) 

kWh 

Event -0.368*** -0.0953*** -0.0693*** -0.122*** -0.239*** -0.0678*** 

(0.0196) (0.00550) (0.00530) (0.0144) (0.0149) (0.00453) 

Observations 7,585,998 54,360,877 17,384,249 17,354,670 17,261,311 9,698,063 

R-squared 0.643 0.558 0.556 0.675 0.691 0.604 

Sample Temp 
>90 

Temp <90 Q1 Q2 Q3 Q4 

User x Temp FE Y Y Y Y Y Y 

User x Hour FE Y Y Y Y Y Y 

Day x Hour FE Y Y Y Y Y Y 

User x Temp x 
Hour FE 

N N N N N N 

Day x Zip Code 
FE 

Y Y Y Y Y Y 

Dep. Var. Mean 1.761 0.650 0.632 0.699 1.093 0.684 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Table B-6: Demand Response Event Consumption by Hour 

VARIABLES 
(1) 

kWh 

(2) 

kWh 

(3) 

kWh 

(4) 

kWh 

(5) 

kWh 

(6) 

kWh 

Event -0.118*** -0.111*** -0.181*** -0.176*** -0.152*** -0.114*** 

(0.0258) (0.0181) (0.0262) (0.0207) (0.0163) (0.00840) 

Observations 6,116,876 6,169,212 6,202,876 6,362,656 6,365,880 6,339,167 

R-squared 0.644 0.628 0.618 0.611 0.602 0.592 

Sample 3PM 4PM 5PM 6PM 7PM 8PM 

User x Temp 
FE 

Y Y Y Y Y Y 

User x Hour FE Y Y Y Y Y Y 

Day x Hour FE Y Y Y Y Y Y 

User x Temp x 
Hour FE 

N N N N N N 

Day x Zip Code 
FE 

Y Y Y Y Y Y 

Dep. Var. 
Mean 

0.621 0.729 0.862 0.955 0.973 0.977 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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Table B-7: Demand Response Event Consumption by Demographic Subgroup 

VARIABLES 
(1) 

kWh 
(2) 

kWh 
(3) 

kWh 
(4) 

kWh 
(5) 

kWh 
(6) 

kWh 
(7) 

kWh 
(8) 

kWh 
(9) 

kWh 
(10) 
kWh 

Event 
-0.159*** -0.130*** -0.175*** -0.115*** -0.147*** -0.142*** -0.113*** -0.149*** -0.185*** -0.106*** 
(0.0146) (0.0125) (0.0169) (0.0102) (0.0129) (0.0142) (0.0143) (0.0134) (0.0197) (0.00776) 

Observations 30,967,014 31,006,389 30,863,054 31,110,349 31,087,420 30,872,574 7,510,659 54,035,303 30,723,921 31,249,482 
R-squared 0.629 0.637 0.635 0.625 0.614 0.646 0.672 0.634 0.643 0.581 

Sample 
> Median 

White 
<Median 

White 
> Median 
Homeown 

<Median 
Homeown 

>Median 
Income 

<Median 
Income 

CARE Non-CARE 

>Median 
Single 
Family 
Home 

< Median 
Single 
Family 
Home 

User x Temp 
FE 

Y Y Y Y Y Y Y Y Y Y 

User x Hour 
FE 

Y Y Y Y Y Y Y Y Y Y 

Day x Hour 
FE 

Y Y Y Y Y Y Y Y Y Y 

User x Temp x 
Hour FE 

N N N N N N N N N N 

Day x Zip 
Code FE 

Y Y Y Y Y Y Y Y Y Y 

Dep. Var. 
Mean 

0.787 0.790 0.873 0.704 0.709 0.868 0.916 0.770 0.971 0.622 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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Table B-8: Demand Response Event Consumption by Energy Profile 

VARIABLES 
(1) 

kWh 
(2) 

kWh 
(3) 

kWh 
(4) 

kWh 
(5) 

kWh 
(6) 

kWh 
(7) 

kWh 
(8) 

kWh 
(9) 

kWh 
(10) 
kWh 

Event 
-0.311*** -0.129*** -0.302*** -0.114*** -0.349*** -0.108*** -0.164*** -0.142*** -0.203*** -0.0845*** 
(0.0344) (0.0118) (0.0341) (0.00978) (0.0330) (0.00986) (0.0162) (0.0132) (0.0201) (0.00660) 

Observations 4,597,299 56,337,092 9,691,857 50,814,945 5,657,430 54,211,335 4,334,172 56,398,358 30,436,125 30,541,412 
R-squared 0.777 0.620 0.682 0.626 0.725 0.635 0.743 0.635 0.597 0.590 

Sample Solar Non-Solar PEV No PEV 
Ever 

Automation 
No 

Automation 
ToU Non-ToU 

>Median 
Consumpti

on 

< Median 
Consumpti

on 
User x Temp 
FE 

Y Y Y Y Y Y Y Y Y Y 

User x Hour 
FE 

Y Y Y Y Y Y Y Y Y Y 

Day x Hour 
FE 

Y Y Y Y Y Y Y Y Y Y 

User x Temp 
x Hour FE 

N N N N N N N N N N 

Day x Zip 
Code FE 

Y Y Y Y Y Y Y Y Y Y 

Dep. Var. 
Mean 

0.568 0.568 1.202 0.698 0.746 0.803 0.808 0.787 1.195 0.382 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation.
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Table B-9: Demand Response Event Consumption  
by Rate Schedule and Energy Profile 

VARIABLES 
(1) 

kWh_ 
(2) 

kWh 
(3) 

kWh_ 
(4) 

kWh_ 

Event 
-0.341*** -0.286*** -0.0540*** -0.0859*** 
(0.0422) (0.0310) (0.00557) (0.00712) 

Constant 
0.978*** 1.080*** 0.666*** 0.712*** 

(0.000833) (0.000691) (7.43e-05) (0.000104) 
Observations 1,304,471 10,378,146 2,133,324 44,891,958 
R-squared 0.769 0.699 0.738 0.620 

Sample ToU + Act. Egy 
NonToU + Act. 

Egy 
ToU + Non-Act 

Egy 
NonToU + Non-

Act Egy 
User x Temp FE Y Y Y Y 
User x Hour FE Y Y Y Y 
Day x Hour FE Y Y Y Y 
User x Temp x 
Hour FE 

N N N N 

Day x Zip Code 
FE 

Y Y Y Y 

Dep. Var. Mean 0.928 1.075 0.722 0.714 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Table B-10 shows how demand response event consumption varies by CARE status and energy 

profile.  

Table B-10: Demand Response Event Consumption  
by CARE Status and Energy Profile 

VARIABLES 
(1) 

kWh 
(2) 

kWh 
(3) 

kWh 
(4) 

KWh 

Event 
-0.245*** -0.287*** -0.0807*** -0.0856*** 
(0.0392) (0.0308) (0.0100) (0.00643) 

Observations 773,095 11,606,535 6,343,274 41,331,250 
R-squared 0.733 0.695 0.680 0.616 

Sample CARE + Act. Egy 
NonCARE + Act. 

Egy 
CARE + Non-Act 

Egy 
NonCARE + Non-

Act Egy 
User x Temp FE Y Y Y Y 
User x Hour FE Y Y Y Y 
Day x Hour FE Y Y Y Y 
User x Temp x 
Hour FE 

N N N N 

Day x Zip Code 
FE 

Y Y Y Y 

Dep. Var. Mean 1.242 1.033 0.862 0.690 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation.
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APPENDIX C: 
Baseline Analysis Regression Tables 

The results from the baseline analysis are shown in Table C-1. The coefficients all refer to the 

estimated effect of the baseline on outcomes using the procedure outlined in the above 

section. Columns (1) and (2) show that baseline levels affect actual consumption. The odd 

columns show the results for using baseline calculation Days 9 and 10 as the instrument, while 
the even columns show the results for using just Day 10.69 The effect is similar regardless of 

the instrument used, although only statistically significant when researchers use the 9- and 10-

day instrument. Columns (3) and (4) are a placebo test, demonstrating the effect of an 

increase in baseline on usage during the next non-event weekday following an event. Because 

baselines should affect only event-day performance, if there was an effect, the instrument 

could be correlated with other factors that affect contemporaneous consumption and results 

could be spurious. However, the coefficients are consistently small, statistically insignificant, 

and in the opposite direction of the main result, increasing confidence that there is a causal 

effect. Columns (5) and (6) provide an additional test of the assumption that the instrument is 

uncorrelated with other factors that might affect event-day consumption. Researchers found 

that an increase in baseline is not economically or statistically associated with higher event-day 

temperatures; taken literally, a 0.1 kWh increase in baseline leads to a statistically insignificant 

0.07 degree Celsius increase in event-day maximum temperature, far too small to explain the 

size of the results. This result provides more evidence that there is a causal effect between 

baselines and consumption during a demand response event.  

Table C-1: Results From Baseline Analysis 

VARIABLES 
(1) 

Actual Use 

(2) 

Actual Use 

(3) 

Placebo 
Use 

(4) 

Placebo 
Use 

(5) 

Max Tmp 

(6) 

Max Tmp 

Baseline 
(using IV) 

0.173** 0.148 -0.00682 -0.0371 0.716 0.900 

(0.0718) (0.0989) (0.122) (0.167) (1.010) (1.699) 

Observations 866,342 866,342 869,377 869,377 866,341 866,341 

R-squared 0.189 0.186 0.241 0.238 0.464 0.458 

Instrument Days 9-10 Days 10 Days 9-10 Days 10 Days 9-10 Day 10 

Dep. Var. 
Mean 

.921 .921 .953 .953 25.78 25.78 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Reassuringly, neither automated nor nonautomated users’ energy consumption on the next 

non-event weekday responds to the baseline providing evidence that the results here are 

causal. The results of this analysis are in Table C-2.  

 
69 In all cases, the F-stat on the first stage are far above 10, suggesting that these instruments are highly 

correlated with baseline, and the instruments are relevant.  
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Table C-2: Results From Baseline Analysis on Automated and Nonautomated Users 

VARIABLES 
(1) 

Actual Use 

(2) 

Actual Use 

(3) 

Placebo 
Use 

(4) 

Placebo 
Use 

(5) 

Max Tmp 

(6) 

Max Tmp 

Baseline 
(using IV) 

-0.0313 0.203** -0.133 0.0214 0.543 0.734 

(0.0546) (0.0770) (0.141) (0.123) (0.811) (1.049) 

Sample Autom Non-Autom Autom Non-Autom Autom Non-Autom 

Observations 125,602 740,657 125,603 743,691 125,602 740,656 

R-squared 0.093 0.209 0.241 0.240 0.470 0.464 

Instrument Days 9-10 Days 9-10 Days 9-10 Days 9-10 Days 9-10 Days 9-10 

Dep. Var. 
Mean 

0.704 0.956 0.924 0.958 25.45 25.84 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Table C-3 shows the results comparing those above and below median income.  

Table C-3: Results of Baseline Analysis by User Income 

VARIABLES 
(1) 

Actual Use 

(2) 

Actual Use 

(3) 

Placebo 
Use 

(4) 

Placebo 
Use 

(5) 

Max Tmp 

(6) 

Max Tmp 

Baseline 
(using IV) 

0.0759 0.215** -0.0543 0.0285 0.213 1.124 

(0.0763) (0.0909) (0.132) (0.123) (0.753) (1.258) 

Sample >Med. Inc <Med. Inc >Med. Inc <Med. Inc >Med. Inc <Med. Inc 

Observations 434,860 431,044 436,238 432,698 434,860 431,043 

R-squared 0.149 0.208 0.222 0.248 0.432 0.475 

Instrument Days 9-10 Days 9-10 Days 9-10 Days 9-10 Days 9-10 Days 9-10 

Dep. Var. 
Mean 

0.818 1.024 0.834 1.073 24.85 26.72 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

  



C-3 

Table C-4 shows the effect of a changing baseline on actual event consumption for high savers 

and nonhigh savers. 

Table C-4: Results of Baseline Analysis on High Savers and NonhighSavers 

VARIABLES 
(1) 

Actual Use 

(2) 

Actual Use 

(3) 

Placebo 
Use 

(4) 

Placebo 
Use 

(5) 

Max Temp 

(6) 

Max Temp 

Baseline 
(using IV) 

0.164*** 0.275*** -0.0523 0.00492 0.706 0.606 

(0.0572) (0.0928) (0.115) (0.132) (0.802) (1.140) 

Sample High Savers Non-HS High-Savers Non-HS 
High-

Savers 
Non-HS 

Observations 181,882 684,439 181,223 688,132 181,882 684,438 

R-squared 0.087 0.262 0.193 0.259 0.433 0.471 

Instrument Days 9-10 Days 9-10 Days 9-10 Days 9-10 Days 9-10 Days 9-10 

Dep. Var. 
Mean 

0.760 0.965 1.081 1.081 26.978 25.422 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation.
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APPENDIX D: 
Streaks and Status Analysis Additional 
Information 

To analyze user events over time, researchers performed a regression analysis controlling for 

temperature, invariant user effects, and average zip code performance on an event. In Table 

D-1, Columns (1) through (3) show the effect of each coefficient relative to a user’s 

performance during events 0 through 10. Columns (3) through (5) show the effect relative to 

when the user had completed between 10 and 30 events. This is because a streak longer than 

10, or any status of gold or platinum is not possible during a user’s first 10 events.  

Table D-1: User Consumption per Event Controlling for Different Factors 

VARIABLES 
(1) 

Usage 
(2) 

Streak=0 
(3) 

Streak>10 
(4) 

Gold or Plat. 
(5) 

Platinum 

10-30 events 
0.0200*** 0.0177***    
(0.00551) (0.00333)    

30-50 events 
0.0401*** 0.0262*** 0.000878 -0.0462*** -0.00956*** 
(0.00765) (0.00429) (0.00256) (0.00475) (0.00312) 

>50 events 
0.0475*** 0.0294*** -0.00104 -0.0670*** -0.0141*** 
(0.0105) (0.00519) (0.00369) (0.00664) (0.00463) 

Observations 813,214 810,170 722,262 722,210 722,210 
R-squared 0.755 0.417 0.705 0.724 0.800 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Streak Analysis Visualizing the Discontinuity Additional Graphs 
Figure D-1 illustrates those with short streaks (shorter than 5, left) and those with long streaks 

(longer than 5, right). 

Figure D-1: Visualizing the Discontinuity by Streak Length 

 

Source: UCLA Luskin Center for Innovation. 
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Figure D-2 shows the streak analysis but restricts the sample to users’ first 20 events, and 

Figure D-3 looks at streaks longer than five during the first 20 events.  

Figure D-2: Visualizing the Discontinuity in the First 20 Events for Entire Sample 

 

Source: UCLA Luskin Center for Innovation. 

Figure D-3: Visualizing the Regression Discontinuity in the First 20 Events by 

Streak Length 

 

Source: UCLA Luskin Center for Innovation. 

Streak Analysis Regression Tables 
Table D-2 and Table D-3 show the statistical regression results for the streak regression 

discontinuity analysis with the whole sample and restricted to the first 20 events, respectively. 

Table D-4 shows these results by demographic subgroup.  

Table D-2: Regression Discontinuity Analysis With Full Dataset 

 

Source: UCLA Luskin Center for Innovation. 
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Table D-3: Effect of Maintaining Streak on Consumption During First 20 Events  

 

Source: UCLA Luskin Center for Innovation. 

Table D-4: Effect of Maintaining Streak on Consumption by Demographic Subgroup 

 

Source: UCLA Luskin Center for Innovation. 

Status Analysis Visualizing the Discontinuity Additional Graphs 
Figure D-4 on the left shows users who were silver in the previous event, who just miss or just 

make becoming gold in the next event. The graph on the right shows those who were gold 

and just missed or made platinum. Figure D-4 on the left, bottom row shows the effect of 

those who had gold in previous event who just missed and maintained gold in the next event. 

The right graphs show those who were platinum in the previous event and just missed or 

maintained platnimum. 

  



D-4 

Figure D-4: Average Consumption in Next Period for Users With Same Previous 
Status 

Source: UCLA Luskin Center for Innovation. 

Figure D-5 looks at consumption for those who just missed or who just met the threshold to 

achieve gold status, restricting the sample to those who were silver in the last period.  

Figure D-5: Average Consumption in Next Period for Users With Different Previous 

Status 

 

Source: UCLA Luskin Center for Innovation. 

Status Analysis Regression Tables 
Table D-5 shows the statistical regression results for the status analysis, which looked at 

consumption in the event following a user just missing or meeting the threshold for a status 

level.  
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Table D-5: Effect of Status on Consumption in the Next Event 

 

Source: UCLA Luskin Center for Innovation. 

Table D-6 presents the effect of status on consumption two events after a user misses or 

maintains that status. 

Table D-6: Effect of Status on Consumption Two Events After Gaining Status 

 

Source: UCLA Luskin Center for Innovation. 

Tables D-7 and D-8 present the effect of gold and platinum status, respectively, on 

consumption by demographic subgroup. 

Table D-7: Effect of Gold Status on Consumption in the Next Event by Demographic 
Subgroup 

 

Source: UCLA Luskin Center for Innovation. 
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Table D-8: Effect of Platinum Status on Consumption in the Next Event by 
Demographic Subgroup 

 

Source: UCLA Luskin Center for Innovation. 

Table D-9 looks at the effect of status on a user’s likelihood to adopt automation technology.  

Table D-9: Effect of Status on Automation 

 

Source: UCLA Luskin Center for Innovation. 
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APPENDIX E: 
Validity Tests for Streak and Status Analyses 

Validity for Streak Regression Discontinuity Design 
One key assumption of a regression discontinuity design for causal identification is that 

individuals cannot control whether they receive the "treatment." In this case, researchers 

assume that individuals do not have precise control over their electricity consumption, making 

it random whether one falls immediately above or below their baseline. If individuals were 

sorting over the discontinuity, there would be an increased number of observations 

immediately on one side of the discontinuity (AKA bunching). To evaluate this, researchers 

include a histogram of the observations showing that bunching is not observed at the 

discontinuity (Figure E-1).  

Figure E-1: Regression Discontinuity Validation Histogram 

 

Source: UCLA Luskin Center for Innovation. 

Researchers also repeat the regression discontinuity effect estimation using a "placebo 

outcome" that could not reasonably be affected by the "treatment" to ensure that researchers 

are not detecting a spurious correlation. Researchers use the same running variable 

(percentage difference between actual and baseline consumption) and measure the "effect" of 

the treatment of crossing the discontinuity on consumption in the previous event. Researchers 

do not observe a treatment effect in this scenario, which increases confidence that the effect 

of the analysis is not caused by endogenous differences between those on either side of the 

discontinuity (Table E-1).  

Table E-1: Placebo Outcome Results 

 

Source: UCLA Luskin Center for Innovation. 
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Validity for Status Regression Discontinuity Design  
Researchers test for bunching at the discontinuity to confirm that the assumptions of the 

regression discontinuity design are met. This test confirms that the "treatment" is not 

associated with changes in variables that it could not reasonably cause. 

First, researchers looked at density. A key assumption of the regression discontinuity design is 

that individuals cannot control whether they fall in to the "treatment" or "control" group. If 

individuals strategically sort into the treatment, there will be bunching around the 

discontinuity. If there is bunching, researchers therefore cannot assign that the treatment is 

essentially randomly assigned and cannot use the regression discontinuity design for 

identification of the treatment effect. The following two histograms demonstrate that 

observations were distributed evenly across the cutoffs and exhibited no bunching (Figure E-2 

and Table E-2).  

Figure E-2: Regression Discontinuity Design Test for Bunching for Gold Status 
(Left) and Platinum (Right) 

 

Source: UCLA Luskin Center for Innovation. 

Next, researchers used a placebo outcome to assess whether the effect of status changes 

subsequent behavior, rather than differences between those who fall above or below the 

cutoff. The placebo outcome used here is consumption in the previous event because it cannot 

be directly affected by the change in incentive. While researchers did not find a statistically 

significant correlation between treatment and prior consumption, the correlation among those 

that were silver in the last event was nearly significant. This near significance raised some 

suspicions that the effect observed earlier could be driven in part by preexisting differences 

between those who do and do not attain gold status rather than the status itself. 

Table E-2: Effect of Status on Consumption in the Preceding Event 

 

Source: UCLA Luskin Center for Innovation.
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APPENDIX F: 
Financial Incentives and Messaging Analyses 
Method – Additional Information 

Demand Response Messaging Test 
Demand response messages were pretested by users on Amazon’s Mechanical Turk. Four 

rounds of demand response events on several hundred test accounts were checked by UCLA 

researchers in July and August 2017 for technical issues and accurate messaging. Demand 

response treatments for the full sample of study participants began August 28, 2017. 

Baseline Characteristics of Treatment Groups Compared to Sample 
Tables F-1 and F-2 show how the treatment groups vary across various characteristics. All 

coefficients are relative to the control group. These tables show that there are only small and 

insignificant differences across the different treatment groups across most baseline 

characteristics. Unfortunately, there do appear to be meaningful differences in solar PV 

adoption across the moral subsidy and no-incentive groups. Researchers controlled for this 

imbalance by including controls for household fixed effects and solar PV adoption x 

temperature fixed effects in all the regressions. This means that the estimates come from 

comparing households with solar in different treatment groups on similar temperature days 

against one another, ensuring that different prevalences of solar are not driving the results. 

Moreover, the imbalance affects only one treatment arm in both sets of analyses, making it 

unlikely that the results observed from the other sets of treatments are driven by confounders.  

Table F-1: Baseline Characteristics of Framing Treatment Groups Relative to 

Control Group 

VARIABLES 
(1) 

No Solar 

(2) 

Chai Pro 

(3) 

Annual 
Usage 

(4) 

Ln Annual 
Usage 

(5) 

Missing Zip 
Code 

Financial 
0.0202 -0.0192 11.18 -0.0318 -0.00312 

(0.0227) (0.0185) (316.3) (0.0482) (0.0159) 

Moral Subsidy 
0.0500** -0.0268 -309.9 -0.0418 0.00550 

(0.0213) (0.0178) (285.5) (0.0456) (0.0159) 

Moral Tax 
0.00695 -0.0104 -310.6 -0.0344 -0.00449 

(0.0229) (0.0187) (295.2) (0.0448) (0.0157) 

Observations 2,239 2,239 2,239 2,238 2,239 

R-squared 0.003 0.001 0.001 0.000 0.000 

Dep. Var. 
Mean 

0.802 0.104 7469 8.720 0.0790 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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Table F-2: Baseline Characteristics of Incentive Treatment Group Relative to 
Control Group 

VARIABLES 
(1) 

No Solar 
(2) 

Chai Pro 

(3) 
Annual 
Usage 

(4) 
Ln Annual 

Usage 

(5) 
Missing Zip 

Code 

No Incentive 
0.0538** -0.0293 -136.7 -0.0177 -0.0137 
(0.0243) (0.0202) (360.8) (0.0504) (0.0173) 

Small 
Incentive 

0.0131 -0.0229 20.58 -0.0129 0.00702 
(0.0204) (0.0165) (271.6) (0.0417) (0.0145) 

Large 
Incentive 

0.0190 -0.0102 -323.9 -0.0479 -0.000844 
(0.0195) (0.0161) (253.0) (0.0397) (0.0136) 

Observations 2,871 2,871 2,871 2,870 2,871 
R-squared 0.002 0.001 0.001 0.001 0.001 
Dep. Var. 
Mean 

0.802 0.104 7469 8.720 0.0790 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Analysis Equation 

For each analysis type, researchers estimate the following equation: a 

𝑌𝑖𝑡 = 𝛼𝑖 +  𝜏𝑡 + 𝛽𝑇𝑟𝑒𝑎𝑡𝑖 ∗ 𝐸𝑣𝑒𝑛𝑡𝑖𝑡 + 𝑍𝑖𝑡 + 𝜖𝑖𝑡 

Where 𝑌𝑖𝑡 is amount of watt-hours used by household i in time t, 𝛼𝑖 is a vector of indicators for 

each household, which controls for all time-invariant household characteristics, 𝜏𝑡 is a day x 

hour fixed-effect controlling for all unit-invariant time characteristics, 𝑇𝑟𝑒𝑎𝑡𝑖 is a vector of 

treatment indicators corresponding to the groups described above. The omitted group is 

always the control group unless otherwise noted. 𝐸𝑣𝑒𝑛𝑡𝑖𝑡 is an indicator for whether an event 

is occurring in a given hour for a given household. The coefficient on the interaction between 

the treatment and event indicator is the coefficient of interest, 𝛽, it tells us the effect of being 

in a given treatment group in an event hour relative to being the control. 𝑍𝑖𝑡 is a vector of 

household specific covariates that vary with time. In the primary specification, researchers 

include daily high temperature interacted with an indicator for whether or not a household has 

solar PV as both temperature alone and temperature interacted with solar are important 

predictors of daily energy use and so increase the power to detect any effects caused by the 

experimental treatments. The inclusion of this variable also helps control for any imbalance in 

randomization that occurred. Finally, 𝜖𝑖𝑡 is a mean zero-error term. Researchers estimate the 

above equation using all pre-event and post-event data between the hours of 4:00 p.m. and 

8:00 p.m. Researchers do not include non-event hours for event participants during event 

days because there is a concern that event usage will spill over into these non-event hours. 

Because this study is an experiment, if randomization were performed correctly, researchers 

could simply compare the means across the different treatment groups to obtain unbiased 

estimates of the treatment effect. Researchers choose to use this more complex estimation 

method for two reasons. First, as mentioned above, the sample is significantly smaller than 

planned for, so including energy use in the non-event periods greatly increases the power by 

controlling for extraneous variation in energy use. Second, as Tables X and X show, despite 

the random assignment, there is some imbalance across treatments in the level of solar use. 

Including non-event hours and additional covariates allows researchers to better control for 

this imbalance to ensure that it is not driving the results.
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APPENDIX G: 
Financial Incentives and Messaging Analyses 
Regression Tables 

Table G-1 shows consumption reductions by financial incentive level. It also shows how this 

varies across days hotter than 90 degrees Fahrenheit, days cooler than 90 degrees Fahrenheit, 

and all days.  

Table G-1: Financial Incentives Results 

VARIABLES 
(1) 

Watt-hour 

(2) 

Watt-hour 

(3) 

Watt-hour 

(4) 

Watt-hour 

(5) 

Watt-hour 

Info-only 
36.65 -26.23 53.39*   

(25.49) (54.33) (28.03)   

5 Pts 
-28.68 -75.60 -20.27   

(23.76) (51.78) (26.13)   

50 Pts 
-57.14 -121.0 -6.359   

(41.63) (87.42) (40.48)   

100 Pts 
-55.40 -50.54 -68.33   

(43.66) (76.02) (48.82)   

200 Pts 
-47.17* -91.06* -36.48   

(27.55) (50.34) (28.54)   

500 Pts 
-55.47 -239.1** 9.472   

(67.82) (111.1) (79.77)   

Info-only 
   -26.33 53.35* 

   (54.33) (28.02) 

5-100 Pts 
   -78.24* -26.62 

   (40.86) (20.48) 

200-500 Pts 
   -107.9** -31.46 

   (46.97) (26.80) 

Observations 364,481 85,714 278,767 85,714 278,767 

R-squared 0.529 0.565 0.499 0.565 0.499 

Sample All >90 Deg <90 Deg >90 Deg <90 Deg 

Dep. Var. 
Mean 

1702 2572 1426 2572 1426 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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Figure G-1: Reduction in Energy Consumption by Incentive Level and Temperature 

 

Source: UCLA Luskin Center for Innovation. 

Table G-2 shows the effect on consumption of different messages on all days, days hotter than 

90 degrees Fahrenheit, and days cooler than 90 degrees Fahrenheit. Table G-2 also examines 

how the effect of messages differs when offered with or without financial incentives.  

Table G-2: Demand Response Event Message Framings Results 

VARIABLES 
(1) 

Watt-hour 
(2) 

Watt-hour 
(3) 

Watt-hour 
(4) 

Watt-hour 

Fin Frame x 
Finan Incent 

  -48.63 -160.9** 

  (32.84) (70.02) 

Fin Frame x Info 
Only 

  35.55 -113.8 

  (41.55) (86.63) 

Moral Sub x 
Finan Incent 

  -33.88 -68.16 

  (30.58) (57.73) 

Moral Sub x Info 
Only 

  4.828 8.722 

  (47.52) (98.84) 

Moral Tax x Finan 
Incent 

  -44.38 -51.22 

  (30.96) (59.54) 

Moral Tax x Info 
Only 

  60.07 9.484 

  (43.59) (90.47) 

Economic 
benefits message 

-20.21 -144.8***   
(26.23) (55.62)   

Moral Subsidy 
-21.47 -45.11   
(25.68) (51.36)   

Moral Tax 
-12.19 -32.84   

(25.09) (50.84)   
Observations 314,873 74,079 314,873 74,079 
R-squared 0.530 0.563 0.530 0.563 
Sample All >90 Deg Day All >90 Deg Day 
Dep. Var. Mean 1702 2572 1702 2572 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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Table G-3 looks at the treatment effects for high- and low-frequency demand response events. 

This table shows the differences in effects for high- and low-frequency events by incentive, 

message, and high-temperature days.  

Table G-3: Event Frequency Results 

VARIABLES 

(1) 

Watt-
hour 

(2) 

Watt-
hour 

(3) 

Watt-
hour 

(4) 

Watt-
hour 

(5) 

Watt-
hour 

(6) 

Watt-
hour 

(7) 

Watt-
hour 

(8) 

Watt-
hour 

Info Only 
49.97 -88.00 20.23 -13.73     

(39.14) (83.56) (45.09) (82.25)     

Any Incent. 
-42.77 -89.41* -25.85 -160.7***     

(26.40) (52.61) (30.78) (53.57)     

Fin Frame 
    -41.97 -164.2* 5.180 -174.3** 

    (39.12) (86.92) (43.99) (80.67) 

Moral Frame 
    13.78 -40.60 -39.68 -90.90 

    (30.41) (60.30) (35.53) (63.36) 

Observations 244,008 56,741 250,384 59,889 202,392 47,257 205,732 49,296 

R-squared 0.522 0.555 0.530 0.570 0.526 0.556 0.531 0.568 

Frequency High High Low Low High High Low Low 

Sample 
All 

>90 Deg 
Day 

All 
>90 Deg 

Day 
All 

>90 Deg 
Day 

All 
>90 Deg 

Day 

Dep. Var. 
Mean 

1712 2590 1695 2567 1712 2590 1695 2567 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Table G-4 shows the treatment effects for events starting at 4:00 p.m. and 6:00 p.m. This 

table shows how consumption reductions vary depending on if the user received an incentive 

and which message they received. It also examines the differences between events on all days 

and only events that occurred on days hotter than 90 degrees Fahrenheit. 
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Table G-4: Demand Response Event Timing Results 

VARIABLES 
(1) 

Watt-
hour 

(2) 
Watt-
hour 

(3) 
Watt-
hour 

(4) 
Watt-
hour 

(5) 
Watt-
hour 

(6) 
Watt-
hour 

(7) 
Watt-
hour 

(8) 
Watt-
hour 

Info Only 
63.94** 47.66 12.78 -53.84     

(29.91) (67.26) (31.14) (77.58)     

Any Incent 
-20.44 -74.26* -39.09** -117.3***     

(16.48) (39.58) (17.10) (38.26)     

Fin Frame 
    -14.92 -111.4* -28.19 -134.2* 

    (29.55) (65.50) (33.38) (80.98) 

Moral Frame 
    6.131 -17.49 -39.95* -96.35** 

    (20.87) (50.36) (21.06) (48.31) 

Observations 200,573 47,132 200,568 47,024 157,445 37,108 157,428 36,971 
R-squared 0.575 0.616 0.577 0.611 0.578 0.616 0.581 0.610 
Event Start 6PM 6PM 4PM 4PM 6PM 6PM 4PM 4PM 
Sample 

All 
>90 Deg 

Day 
All 

>90 Deg 
Day 

All 
>90 Deg 

Day 
All 

>90 Deg 
Day 

Dep. Var. 
Mean 

1876 2736 1527 2408 1876 2736 1527 2408 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 

Table G-5 shows the differences in treatment effect between customers with and without solar 

PV.  

Table G-5: Results for Customers With and Without Solar PV 

VARIABLES 
(1) 

Watt-
hour 

(2) 
Watt-hour 

(3) 
Watt-
hour 

(4) 
Watt-
hour 

(5) 
Watt-
hour 

(6) 
Watt-
hour 

(7) 
Watt-
hour 

(8) 
Watt-
hour 

Info Only 
117.0* 37.54 34.94 -15.73     

(69.26) (162.1) (26.44) (55.22)     

Any Incent 
-61.05* -237.7*** -26.06* -64.77**     
(36.52) (82.31) (14.95) (31.08)     

Fin Frame 
    -69.55 -323.1** -11.26 -115.1* 

    (65.52) (148.9) (27.93) (59.20) 

Moral Frame 

  
    -8.440 -202.6* -14.65 -5.651 

    (46.49) (114.5) (18.68) (38.52) 

Observations 69,009 15,496 332,132 78,654 53,710 11,848 261,163 62,225 
R-squared 0.503 0.526 0.570 0.601 0.497 0.520 0.574 0.600 
Solar Yes Yes No No Yes Yes No No 

Sample All 
>90 Deg 

Day 
All 

>90 Deg 
Day 

All 
>90 Deg 

Day 
All 

>90 Deg 
Day 

Dep. Var. 
Mean 

1400 2393 1764 2608 1400 2393 1764 2608 

Clustered standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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Table G-6 shows the differences in treatment effect between customers above- and below-

median income.  

Table G-6: Results for Customers by Median Income 

VARIABLES 

(1) 

Watt-
hour 

(2) 

Watt-
hour 

(3) 

Watt-
hour 

(4) 

Watt-
hour 

(5) 

Watt-
hour 

(6) 

Watt-
hour 

(7) 

Watt-
hour 

(8) 

Watt-
hour 

Info Only 
38.44 110.5 31.81 -107.0     

(40.40) (82.02) (33.21) (71.07)     

Any Incent 
-22.61 -46.00 -37.72** -115.4***     

(23.92) (43.77) (17.72) (40.58)     

Fin Frame 
    -28.44 -56.27 -21.25 

-
202.8*** 

    (44.44) (82.17) (32.86) (74.41) 

Moral Frame 
    -5.582 16.54 -25.94 -79.20 

    (29.89) (57.22) (22.37) (50.56) 

Observations 149,140 42,020 251,841 52,112 117,896 33,434 196,817 40,621 

R-squared 0.550 0.575 0.515 0.557 0.554 0.576 0.518 0.555 

Income >Med >Med <Med <Med >Med >Med <Med <Med 

Sample 
All 

>90 
Deg 
Day 

All 
>90 Deg 

Day 
All 

>90 
Deg 
Day 

All 
>90 
Deg 
Day 

Dep. Var. 
Mean 

1717 2586 1682 2560 1717 2586 1682 2560 

Robust standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Source: UCLA Luskin Center for Innovation. 
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